
Configuration Class How-To
This document is an introduction on how to implement a game in the Colored
Trails (CT) system.

To maximize the flexibility of the Colored Trails system to allow various kinds of
games, we separate the game logic from the rest of the system. Thus, the game
designer needs only concentrate on the game logic, rather than infrastructure
issues such as networking and communicating state changes.

To implement a game, one creates a game configuration class. Such a class is
what defines the logic of the game; this class will communicate with the server
through an established API that will allow control over nearly all aspects of the
game. Indeed, the design philosophy of the CT3 system is to allow the game
configuration class to customize as much of the game as possible. As a result,
we cannot hope to illustrate all possible ways of using the features made
available to the game designer, but we will illustrate how all components of the
API are used.

To implement a game, one begins by creating a Java class that extends the class
coloredtrails.shared.types.GameConfigDetailsRunnable. For illustrative
purposes, let us call our subclass MyGame. The source file MyGame.java
should not belong to any package and should be saved in the gameconfigs/
subdirectory. At runtime, the game configuration file will be dynamically loaded by
the Colored Trails server via the Administratorʼs “add configuration” command.
Thus, the game configuration class executes on the serverʼs JVM.

This document presents the most useful methods of the game configuration class
and describes typical usage.

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

..Basic Run Method
 4

..DEFINING GAME COLORS
 4

..BUILDING THE GAME BOARD
 4

.................................PLACING GOALS ON THE GAME BOARD
 5

.............................PLACING PLAYER PIECES ON THE BOARD
 6

...Allocating Chips to Players
 6

...GAME PHASES
 7

..Indefinite Phase lengths
 8

...SETTING PLAYER PERMISSIONS
 9

........................AUTOMATICALLY GIVING CHIPS TO PLAYERS
 9

.....................................endPhase(String phaseName) Method
 10

..ENDING THE GAME
 10

...AUTOMATIC MOVEMENT
 10

...SCORING
 10

..BEST USE OF CHIPS
 11

...AUTOMATIC MOVEMENT
 11

...Discourse Methods
 12

..Automatic Exchange
 14

..Adding and Changing Functionally
 15

..Partial Visibility Functionality
 16

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

Approach
17

Filter Methods
17

filterBoard
18

filterPlayerStatus
19

filterGamePalette
19

Agent-Side Code
19

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

Basic Run Method
When a game begins, the CT3 server will invoke the run() method of the
configuration class. This is the only method of GameConfigDetailsRunnable that
must be overridden. In the run() method, we setup the game state, which
includes the state of the game board and the states of the players. To set the
game state, we first need to obtain the ServerGameStatus instance for the game
we are about to start:

ServerGameStatus gs
	 = ServerData.getInstance().getGameStatusById(getGameId());

DEFINING GAME COLORS
We begin by defining the colors for the game. These are the colors that may
appear on the board as well as the colors of the chips that players may have:

// set game palette
gs.addColorToGamePalette("RGBRed");
gs.addColorToGamePalette("RGBGreen");
gs.addColorToGamePalette("purple1");
gs.addColorToGamePalette("orange1");	 	 	

A full list of colors that can be used is found in the class
shared.GlobalColorMap.java

BUILDING THE GAME BOARD
We next set the dimensions of the game board:

gs.makeNewBoard(4, 4); // this makes 4 rows of 4 columns each

Then, we assign colors to the boardʼs squares. We create an array of Square
objects the same size as the board, and fill each element of the array with a new
Square instance:

board = gs.getBoard();
Square[][] squares =

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

	 	 new Square[board.getRows()][board.getCols()];

for (int i = 0; i < board.getRows(); i++)
	 for (int j = 0; j < board.getCols(); j++)
	 	 squares[i][j] = new Square();

Then, we set the color of each square in the array. For example, if we want to
use colors selected at random from our game palette, we can do the following:

String colorname =
	 	 GamePalette.getRandomColorName(gs.getGamePalette());
squares[i][j].setColor(colorname); // for each i and j

Then, we assign the squares to our board instance:

board.setSquares(squares);

PLACING GOALS ON THE GAME BOARD
We first create Goal instances, one for each goal we wish to place on the board.
All goals have a location; they may each also have an integer type and/or a
String id. These latter properties are useful when your game has multiple goals,
particularly if different goals are intended for different players (e.g., Player 1 must
reach Goal 1, while Player 2 must reach Goal 2). We will use the Goal
constructor that allows us to specify the goalʼs type and location:

Goal g0 = new Goal(0, new RowCol(1, 1)); // goal 0 has type 0
Goal g1 = new Goal(1, new RowCol(3, 2)); // goal 1 has type 1

Goal g0 has type zero and is positioned on row 1, column 1 (rows and columns
are numbered starting at zero); goal g1 has type 1 and is positioned at row 3,
column 2. The goalʼs type is used by the GUI to determine what goal icon to
display. Currently, we have two different goal icons, corresponding to types 0
and 1.

We then place these goals on the board. We use the board objectʼs setGoal()
method:

gs.getBoard().setGoal(g0, true);
gs.getBoard().setGoal(g1, true);

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

The above calls will place our two goals on the board at the locations specified
when we created the goal objects.

We can also remove goals from the board with the setGoal() method:

gs.getBoard().setGoal(g0, false);
gs.getBoard().setGoal(g1, false);

If we want to move a goal, then we use the board objectʼs moveGoal() method:

gs.getBoard().moveGoal(g0, new RowCol(2, 2)); // moves the goal

The above call will move goal g0. We can get the location of a goal with the goal
objectʼs getLocation() method:

RowCol rc = g0.getLocation(); // returns current location

The above call will return the goalʼs current location, even after we move it with
Board.moveGoal().

PLACING PLAYER PIECES ON THE BOARD
Each player in the game has a unique PerGameID, starting with zero up to the
number of players - 1. If the players in your game have different roles, you can
use this ID number to define the different roles in your game. For example, the
player with ID 0 may be the one that has to move first in your game.

The GameStatus object includes PlayerStatus objects, which represent the
location of the player on the board as well as the chips the player possesses. We
can obtain a playerʼs PlayerStatus by specifying the playerʼs PerGameID:

PlayerStatus ps = gs.getPlayerByPerGameId(0);

We specify the location of a player with the setPosition() method of the
PlayerStatus class:

gs.getPlayerByPerGameId(0).setPosition(new RowCol(1, 1));
gs.getPlayerByPerGameId(1).setPosition(new RowCol(2, 1));
	

Allocating Chips to Players

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

Each player also possesses a set of colored chips, which the player can use to
move on the board. We first create a ChipSet instance, and specify how many
chips of each color exist in the set:

ChipSet playerChipset = new ChipSet();
playerChipset.set(“RGBRed”, 2); // two red chips
playerChipset.set(“purple1”, 3); // three purple chips

Note that we are not required to specify a chip count for all colors that are
defined for the game; not specifying a chip count for a color is equivalent to
specifying that we have zero chips of that color.

We then assign the chip set to a player:

gs.getPlayerByPerGameId(0).setChips(playerChipset);

Note that we can enumerate the colors that are defined for the game with the
GamePalette:

for (String color : gs.getGamePalette().getColorListArray())
	 playerChipset.set(color, 3); // three chips of each color

GAME PHASES

A game may have any number of phases. A phase is a period of time during
which players have certain permissions and prohibitions applied to them. We can
define a sequence of phases such that the actions that are allowed change from
one phase to the next. A phase terminates when it times out, or it can be
advanced by the game configuration class when some event of interest occurs.
The sequence of phases will progress linearly in the order in which they are
defined, unless the game configuration class specifies the phase that should
follow. The phase sequence can also be made to automatically loop.

We first create a ServerPhases object and pass the game configuration class as
an argument to the constructor:

ServerPhases ph = new ServerPhases(this);

We then define a sequence of phases in the order they should occur. The game
will begin with the first phase we define. For each phase, we specify a phase
name (to be displayed in the GUI) and the length of the phase in seconds:

ph.addPhase("Communication Phase", 30);
ph.addPhase("Exchange Phase", 10);

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

ph.addPhase("Movement Phase", 10);
ph.addPhase("Feedback Phase", 10);

We then indicate whether we wish this sequence to automatically loop or not:

ph.setLoop(false);

Finally, we pass the phases object to our GameStatus instance:

gs.setPhases(ph);

The ServerPhases object does not define the permissions and prohibitions
applied to the players; it only defines phase names, phase lengths, and the
sequence. The permissions and prohibitions are set elsewhere in the game
configuration class, as described below.

beginPhase(String phaseName) Method

The beginPhase() method of the configuration class is called by the CT3 server
at the beginning of each game phase. The argument passed to this method is a
string giving the name of the game phase that is about to start (see Defining
Phases, above). The beginPhase() method allows you to perform any tasks that
are appropriate for your game at the beginning of each phase. For example, it
may be that your game has one phase in which players are only allowed to
communicate with each other and transfer chips, and another phase in which
players are only allowed to move on the board. Such player actions can be
allowed or disallowed by the game configuration class. As another example, it
might be that you want to automatically provide additional chips to certain players
at the beginning of certain game phases. Yet another example might be that
goals are to move at the beginning of certain phases. You can of course add
functionality beyond what is described here.

Indefinite Phase lengths
Game phases may last indefinitely. This is useful for purposes of having practice
phases (e.g., in a tutorial) or if for synchronization points during a game. The
configuration file “lib/adminconfig/PhaseTest.txt” provides an example for how to
use this functionality. It includes two phases with indefinite length. In the
Exchange phase, the system waits for one of the players to accept a proposal
before moving to the next phase. This next phases allows players to move their
pieces by hand. As soon each player has moved her piece at least one square,

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

this phase will end. The final phase is timed; player scores are calculated and
displayed here. The game ends after this last phase.

SETTING PLAYER PERMISSIONS
The CT3 system allows the game configuration class to control what actions
players are permitted to take. Currently, there are three types of action that can
be permitted or prohibited: 1) a player may communicate with another agent by
sending that agent a DiscourseMessage (see below and sample code for agents
for further details), 2) an agent may be allowed to transfer chips to another agent,
3) an agent may be allowed to move on the board. We allow or disallow these
actions by sending a boolean argument to the following PlayerStatus methods:

PlayerStatus ps = gs.getPlayerByPerGameId(0);
ps.setCommunicationAllowed(true);
ps.setTransfersAllowed(false);
ps.setMovesAllowed(false);

Note that we can give different permissions to different players in each game
phase.

AUTOMATICALLY GIVING CHIPS TO PLAYERS

To add chips of a certain color to a playerʼs chip set, we can do the following:

PlayerStatus ps = gs.getPlayerByPerGameId(0); // get Player 0
ChipSet cs = ps.getChips(); // get Player 0’s current chips
cs.add(“purple1”, 5); // add five purple chips
cs.set(“RGBRed”, 2); // player now has two red chips
ps.setChips(cs);

We first get the PlayerStatus instance for the player we are interested in. Then
we get that playerʼs chip set. Next, we add some number of chips with the add()
method. We can use this method to add chips of a color not previously
possessed by the player; we can also use this method to take away chips of a
certain color by passing a negative integer argument. Note that the add() method
does not require the result of adding to be non-negative. We can also set the
number of chips of a certain color with the set() method. Once we have modified
the chip set as desired, we must update the playerʼs state with the setChips()
method; this method will cause the CT3 server to inform other players about this
playerʼs new state.

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

endPhase(String phaseName) Method

The endPhase() method of the game configuration class is called by the CT3
server at the end of each game phase; a phase ends when its timer reaches zero
or when some event is used to trigger the end of the phase (see below). The
String argument passed to the endPhase() method is the name of the phased
that has just ended. Just like the beginPhase() method, we can use the
endPhase() method to perform any tasks that are appropriate for our game.

ENDING THE GAME

One important operation that we will likely perform in the endPhase() method is
ending the game. We will likely end the game when a particular phases has
completed, or when we have looped through the sequence of phases a certain
number of times (if we are looping then we are responsible for keeping track of
the number of times we have looped; the CT3 system does not currently track
this). In the example below, the game phase “Feedback Phase” is the last phase
of the game:

if(phaseName.equals("Feedback Phase"))
	 gs.setEnded(); // tell the CT3 server that the game ended

AUTOMATIC MOVEMENT

Another type of operation we might want to perform at the end of a phase is to
automate the movement of player pieces. In the example below, we move each
playerʼs piece to a board location that will maximize the playerʼs score given the
chips the player possesses. This example makes use of two new classes. The
Scoring class is used to compute a playerʼs score given the game state; we
discuss this more below. The BestUse class is used to compute the best move
sequence of a player given the game state; it requires the Scoring instance to
determine which move sequence maximizes the playerʼs score.

SCORING

The Scoring constructor currently takes three integer arguments. The first
argument is the number of points awarded to a player if it lands on a goal square.
The second argument is a penalty for each square the player is away from the
goal square; in the example below, if the player can only get to within two
squares of the goal, it gets a penalty of 20 points (i.e., -20). The third argument is

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

the value of each chip the player doesnʼt use for moving.

Scoring s = new Scoring(100, -10, 5);

Note that the Scoring class does not take into account the states of other players
in the game; of course, you can define new scoring rules to do so.

To get the score of a player in a certain state, we use the Scoring instance as
follows. The example below gets the score of Player 0 given its current location,
current set of chips, and the location of Goal g0 (see above on defining goals):

PlayerStatus ps = gs.getPlayerByPerGameId(0); // get Player 0
double thescore = s.score(ps, g0.getLocation());

BEST USE OF CHIPS

The BestUse class can be used to calculate the best sequence of moves of a
player, given the playerʼs current location and chips, and the location of the goal
it needs to reach.

Scoring s = new Scoring(100, -10, 5);
PlayerStatus ps = gs.getPlayerByPerGameId(0); // get Player 0
int goaltype = 0; // Player 0 wants to reach Goal 0

BestUse bu = new BestUse(gs, ps, s, goaltype);
Path p = bu.getPaths().get(0);

We use the getPaths() method to obtain an ArrayList<Path> instance, which is a
list of optimal paths for the player. A Path instance represents a sequence of
RowCol objects; see shared.types.Path java code for details.

AUTOMATIC MOVEMENT

Using the Scoring and BestUse classes, we can achieve automatic movement as
follows. The example below moves players after the “Communication Phase”
ends:

if (phasename.equals("Communication Phase"))
{
	 // 100 for goal, -10 per unit distance, 5 for each chip
 Scoring s = new Scoring(100, -10, 5);

	 ArrayList<PlayerStatus> playersInGame = gs.getPlayers();

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

	 for (PlayerStatus ps : playersInGame)
	 {
	 	 ps.setMovesAllowed(true); // allow moving on board
	 	 	
	 	 // calculate best use of chips possessed
	 	 BestUse bu = new BestUse(gs, ps, s, 0);
	 	 Path p = bu.getPaths().get(0);
	 	 gs.doPathMove(ps.getPerGameId(), p); // move player
	 	 // set the player’s score now that it’s moved
	 	 ps.setScore(getPlayerScore(i));
	 }
}

The doPathMove() method will cause the CT3 server to move the specified
player along the specified path. The CT3 server checks to make sure that the
player has the chips required to complete the entire path. If the entire path
cannot be traversed, then the player is not moved at all; an alternative policy
that might be implemented in the future would be to allow the player to move the
longest feasible prefix of the path. The getPlayerScore() method is described
below.

Discourse Methods

The doDiscourse() method of the configuration class is invoked by the CT3 when
a player has sent a discourse message, addressed either to another player (e.g.,
to propose exchanging chips) or to the CT3 server itself (e.g., to request
information of some sort—note that you can create your own DiscourseMessage
subclasses to enable transmission of information to, from, and between players).

The doDiscourse() method provides a way for the configuration class to intercept
messages and examine them. Such examination allows the configuration class
to prohibit certain messages from being relayed to a recipient player, or take
certain actions, depending upon the message type or message content.

The DiscourseMessage class is the super class of all message classes; different
subclasses represent different types of messages between players. The type of
the message is held in “msgType” field in the message class. The content of the
message is flexible and represented by a Hashtable named “contents”.

The example below shows how we can examine the DiscourseMessage and
implement an automatic transfer of chips when the message indicates that a
player has accepted an offer made by another player to exchange chips. The

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

example uses the doTransfer() method to make the CT3 server actually transfer
chips from one player to another. The example also uses the
Phases.advancePhase() method to move the game to the next phase, regardless
of how much time remains in the phase; this is an example of an event-based
phase advance.

public boolean doDiscourse(DiscourseMessage dm)
{ 	
	 ServerGameStatus gs =
	 	 	 	 ServerData.getInstance().getGameStatusById(getGameId());
	
	 // go ahead and relay the message
	 boolean result = gs.doDiscourse(dm);

	 // automatic exchange of chips upon acceptance of a proposal
	 // is this message type a response to a proposal?
	 if (dm.getMsgType().equals("basicproposaldiscussion"))
	 {
	 	 // make a copy of the response message
	 	 BasicProposalDiscussionDiscourseMessage bpddm =
	 	 	 	 	 	 	 	 new BasicProposalDiscussionDiscourseMessage(dm);

	 	 // did responder accept the proposal?
	 	 if (bpddm.getCommentary().equals("accept"))
	 	 {
	 	 	 // retrieve original proposal from response
	 	 	 BasicProposalDiscourseMessage pdm =
 new BasicProposalDiscourseMessage((Hashtable)bpddm.
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 getDataValue("proposalMessage"));

	 	 	 // Get the sender and recipient chips from proposal
	 	 	 ChipSet senderChips = pdm.getSenderChips();
	 	 	 ChipSet recipientChips = pdm.getRecipientChips();
	 	 	
	 	 	 // Check that sender and recipient have chips to transfer
	 	 	 if (gs.getPlayerByPerGameId(pdm.getFromPerGameId()).
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 getChips().contains(senderChips) &&
	 	 	 	 	 gs.getPlayerByPerGameId(pdm.getToPerGameId()).
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 getChips().contains(recipientChips))
	 	 	 {
	 	 	 	 System.out.
	 	 	 	 	 	 println("#### EXECUTING AUTOMATIC CHIP TRANSFER");

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

	 	 	 	 // transfer the chips from the sender
	 	 	 	 super.doTransfer(pdm.getFromPerGameId(),
	 	 	 	 	 	 	 	 	 	 	 	 	 pdm.getToPerGameId(), senderChips);
	 	 	 	
	 	 	 	 // transfer the chips from the recipient
	 	 	 	 super.doTransfer(pdm.getToPerGameId(),
	 	 	 	 	 	 	 	 	 	 	 	 	 pdm.getFromPerGameId(), recipientChips);
	 	 	 	
	 	 	 	 // automatically advance the game’s phase
	 	 	 	 gs.getServerPhases().advancePhase();
	 	 	 }
	 	 	 else
	 	 	 {
	 	 	 	 System.out.println("Not enough chips to transfer");
	 	 	 }
	 	 }
	 }
	
	 return result;
}

Automatic Exchange

A chip exchange between players A and B consists of two chip transfers, one
from A to B and another from B to A. Although the chip-transfer code checks
whether the sending player possesses the chips specified by the transfer, we
would like a chip exchange to occur only if both players possess the specified
chips; that is, if A possesses the chips to be sent to B, but B lacks chips to be
sent to A, then we do not want A to send chips to B. The information about the
chips to be transferred and the sender and recipient id is held in the discourse
message. To check for chip availability, use the method contains() in the ChipSet
class.

int getPlayerScore(int perGameId) Method

The getPlayerScore() method of the configuration class is called by the CT3
server when the server needs to know the current score of the player specified
by the playerʼs perGameId. The return value is an integer. Future versions of CT3
may change the return type to a double. Typical code for this method would be

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

the following:

public int getPlayerScore(int perGameId)
{
	 ServerGameStatus gs =
	 ServerData.getInstance().getGameStatusById(getGameId());
	 	
	 PlayerStatus ps = gs.getPlayerByPerGameId(perGameId);
	
	 // assume g0 is a Goal object we’ve defined elsewhere
	 return (int)Math.floor(s.score(ps, g0.getLocation()));
}

Of course, we would change the above code if different players need to get to
different goals.

 Adding and Changing Functionally
While overriding GameConfigDetailsRunnable.run() is the only requirement for a
game configuration class, there are also a number of handler methods for
different actions that occur throughout the course of a game. The following table
lists these handler methods and briefly discusses their default operation if they
are not overridden.

Method Name Default operation
doMove() Execute a move if the player involved has the chips and the

new position is a neighbor of the current position and
remove the requisite chip

doTransfer Transfer chips from one player to another as requested if
the players have the necessary chips. See below for more
detail.

doDiscourse Relay a discourse action between players. See below for
more detail.

beginPhase Invoked before each game phase begins; you may use this
method to change permissions based upon which game
phase is beginning, for example.

endPhase Invoked after each game phase ends

The above handler methods provide the foundation for implementing player roles
and player commitments (e.g., enforcement of trade proposals). The
configuration class must supply additional code to track the actions taken by
players if, for example, the game designer wishes to implement commitments.

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

Useful Get Methods

Class Name Method Name Returns
ServerData getInstance() ServerData
GameConfigDetailsRunnable getGameId() gameId
ServerData getGameStatusById() ServerGameStatus
ServerGameStatus getPlayerByPerGameId PlayerStatus
ServerGameStatus getBoard Board
ServerGameStatus getGamePalette GamePalette
Phases getCurrentPhase Current phase name
ServerGameStatus getScore Score obtained by this

player in its current game
BestUse getPaths() Best path to get to the

goal
DiscourseMessage getMsgType() Message type
DiscourseMessage getDataValue(key) Value by key in the

content of the message

Examples

Examples of a working configuration files are in the gameconfigs/ directory of the
source distribution.

Partial Visibility Functionality
By default, players in Colored Trails have access to the entire game state, e.g.,
the colors on board, locations of player pieces, locations of goals, and chips
possessed by each player. Nevertheless, it may be the case that an experiment
calls for one or more player to have uncertainty about the game state. For
example, we might want a player to lack information about what chips another
player possesses, or have uncertainty about the location of a goal. This
document discusses the facility in Colored Trails that is used to introduce
uncertainty about game state.

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

Approach
Colored Trails represents game state using several classes. These classes are
Square, Goal, Board, ChipSet, PlayerStatus, GameStatus, GamePhase, and
Phases. ColoredTrails currently allows the experimenter to introduce uncertainty
in all of these representation classes except for GamePhase and Phases (these
two classes will be addressed in a future release). The APIs for these
representation classes are designed to operate under the default assumption for
full information.

All of the representation classes are subclasses of CTStateContainer. In this
superclass, all game state information is represented with feature-value pairs.
For example, by default, ChipSet is encoded with feature-value pairs where each
feature is a chip color and the corresponding value indicates the number of chips
of that color. The ChipSet API hides this approach to encoding game state. To
introduce uncertainty into a Colored Trails game, the experimenter needs to use
the more general API of CTStateContainer, where feature-value pairs can be
accessed and manipulated directly.

By allowing direct access to the feature-value pairs of a representation class, the
experimenter is free to modify information in arbitrary ways. Thus, an
experimenter may not only remove information, but may re-represent the
information. For example, it may be the we do not want Player 1 to know
anything about what chips Player 2 possesses; this is a case where we simply
remove data from the ChipSet. Alternatively, it may be that we want Player 1 to
know something short of full information; for example, Player 1 may not be told
the exact ChipSet that Player 2 has, but may be told that Player 2 has at least
two blue chips and no more than one red chip. By encoding state with feature-
value pairs, the experimenter has freedom to represent game state in any way
that is appropriate for the experiment. The only requirement is that the GUI code,
and any computer agents, all understand the feature-value convention used by
the experimenter. Note that a value for a feature may be any arbitrary object.
Thus, an experimenter may devise a new classes to assist with re-representation
of game state.

Filter Methods
Before the Colored Trail server sends game state information to players, it gives
the game configuration class an opportunity to modify or filter game state data.
This is where the experimenter can introduce uncertainty into the game. There
are currently three filter methods defined in GameConfigDetailsRunnable. To
introduce uncertainty, the experimenter needs merely to override the appropriate
method in the game configuration subclass. The default

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

The filter methods are:

public Board filterBoard(Board fromserver, int perGameId)

public Set<PlayerStatus> filterPlayerStatus(Set<PlayerStatus> fromserver,
 int perGameId)

public GamePalette filterGamePalette(GamePalette fromserver, int perGameId)

The first parameter to each filter method is a representation class instance that is
to be modified in some way. Note that this class instance is a copy of the game
state data held internally by the server. Thus, you are free to modify the instance
without fear of corrupting the server. The second parameter to each filter method
is the ID of the player to which the modified game state is to be addressed. Thus,
the server will call each filter method once for each player in the game. Note that
the server broadcasts game state information to each player regardless of to
whom the data is addressed. This provides the opportunity for a player to learn
another playerʼs view of the game state. In future versions of Colored Trails, we
will introduce permissions that can be used to prevent a player from seeing what
another players knows about the game state.

filterBoard

Override this method to modify what a player is told about the state of the game
board. The Board object is composed of several Square instances, which
themselves may contain Goal instances. Here is one example of introducing
uncertainty:

// Player 0 doesnʼt know the colors of squares that contain goals
public Board filterBoard(Board serverboard, int perGameId)
{

 if (perGameId == 0) // we filter information for this player only

 for (RowCol rc : serverboard.getGoalLocations();)

 serverboard.getSquare(rc).remove(“color”);

 return serverboard;
}

The above example removes, for Player 0, information about the color of squares
that contain goals. Thus, Player 0 will know where goals are, but will not know
what color chip it needs to land on a goal square; instead, perhaps, Player 0 will
need to negotiate with or observe other players to obtain this information. This
example code shows a mixture of calls to the higher-level standard API (the
getSquare method of Board) and the lower-level API that is common to all
representation classes (the remove method of CTStateContainer). Because we
have removed the “color” feature of goal squares, the GUI code must first check

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

whether a square has a color feature before it attempts to render the squareʼs
color (otherwise a null pointer exception will occur). When a square lacks a color
feature, the square will instead show some background color (which should not
be a chip color) or perhaps the GUI can render a special background pattern to
signify that the color of the square is unknown. Similarly, when a computer agent
tries to reason about what chips it might need to reach a goal square, it will need
to take into account the possibility that it will lack knowledge about a squareʼs
color and therefore need to reason under uncertainty.

filterPlayerStatus

Override this method to modify what a player is told about the state of all players
in the game, including itself. PlayerStatus instances hold information about where
a player is located on the board and what chips a player possesses. The first
argument is a collection of PlayerStatus instances, one instance for each player
in the game. Because this filter method is called once for each player in the
game, the experimenter can provide each player with a completely different view
of each playerʼs game state. For example, Player 0 may not know where Player 1
is located on the board, but know Player 1ʼs chips; at the same time, Player 1
may know Player 0ʼs location but not Player 0ʼs chips.

public Set<PlayerStatus> filterPlayerStatus(Set<PlayerStatus> serverps,
 int perGameId)
{

 if (perGameId == 0)

 for (PlayerStatus ps : serverps)

 if (ps.getPerGameId() == 1)

 ps.remove(“position”);

 else if (perGameId == 1)

 for (PlayerStatus ps : serverps)

 if (ps.getPerGameId() == 0)

 ps.remove(“chips”);
}

filterGamePalette

Override this method to modify what a player knows about the colors defined for
the game. This option is perhaps the least useful of the three filter methods, but
is supplied for completeness.
Agent-Side Code
The filter methods allow the experiment designer to control what each agent
learns about the game state. Here we discuss how agent-side code processes
data when it is being filtered.

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

The class coloredtrails.agent.ColoredTrailsClientImpl has a method called
onMessage that is called each time the server sends game state information (as
well as other kinds of messages). This method checks to see if the perGameId of
the intended recipient matches the perGameId of the agent receiving the
message; if the IDs match, then the agentʼs state information is updated
according to what is received in the message, otherwise the message is ignored.
For many situations that involve uncertainty, this default behavior is appropriate.
In some cases, however, an experimenter may wish for an agent to examine
state information addressed to another player. For example, if a player needs to
reason about what another player knows about the game state, then the player
should read messages addressed to that other player. Code for doing this might
look something like the following:

...

else if (cmd.equals(ColoredTrailsServer.BOARD))
{

 try

 {

 ObjectMessage obj = (ObjectMessage)msg;

 // find out who this game state data is addressed to

 int forPerGameId =

 obj.getIntProperty(ColoredTrailsServer.SPECIFICMSG);

 // is it addressed to me?

 if (forPerGameId == perGameId)

 {

 Board board = (Board)obj.getObject();

 getGameStatus().setBoard(board);

 boardUpdated(board);

 ...

 }

 // is this message for Player 3 (who I need to reason about)?

 else if (forPerGameId == 3)

 {

 // update a different Board field representing what Player 3
knows

 // donʼt update your own Board instance!

 }

 }

 ...
}

REV. 21/07/08

Copyright (C) 2008, President and Fellows of Harvard College. All Rights Reserved. This document is
released under the GNU General Public License Version 2.

