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ABSTRACT
This paper presents a statistical learning approach to predicting
people’s bidding behavior in negotiation. Our study consists of
multiple 2-player negotiation scenarios where bids of multi-valued
goods can be accepted or rejected. The bidding task is formalized
as a selection process in which a proposer player chooses a single
bid to offer to a responder player from a set of candidate proposals.
Each candidate is associated with features that affect whether or
not it is the chosen bid. These features represent social factors that
affect people’s play. We present and compare several algorithms
for predicting the chosen bid and for learning a model from data.
Data collection and evaluation of these algorithms is performed on
both human and synthetic data sets. Results on both data setsshow
that an algorithm that reasons about dependencies between the fea-
tures of candidate proposals is significantly more successful than
an algorithm which assumes that candidates are independent. In
the synthetic data set, this algorithm achieved near optimal perfor-
mance. We also study the problem of inferring the features ofa
proposal given the fact that it was the chosen bid. A baselineim-
portance sampling algorithm is first presented, and then compared
with several approximations that attain much better performance.

1. INTRODUCTION
Recent developments in automated decision-making are making

it possible for agents to negotiate with each other in environments
of increasing complexity, such as supply chains and market-based
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scheduling [16, 1]. At the same time, computer systems are becom-
ing commonplace in our every day lives, and settings in whichcom-
puters and people make decisions together are increasinglypreva-
lent [4]. One area in which both of these trends interleave iselec-
tronic commerce, where computers acting as autonomous agents,
or as proxies for individual people, are changing the way goods
and services are traded on the Internet [21].

One of the main challenges for agents that negotiate in strategic
environments is reasoning about the bidding strategies of others.
For example, in the Supply Chain domain of the Trading Agent
Competition [1] (TAC SCM), agents bid competing offers for sup-
plying a series of multi-valued contracts, each satisfyinga minimal
configuration of computer hardware resources. The agent with the
lowest offer is selected to supply each contract after procuring the
necessary resources. Agents cannot observe each others’ bids, re-
sources or the winning bid configuration. For agents to out-bid their
opponents without sacrificing future revenue, they must be able to
predict their opponents’ bids for current and future contracts.

Although much work has been done on predicting the bidding
and pricing behavior of automatic agents in negotiation [16, 20,
19], modeling people’s bidding behavior presents several new chal-
lenges. First, social factors such as altruism, self-interest and fair-
ness affect people’s negotiation strategies [3]. Second, people’s
behavior is diverse – the extent to which social factors affect be-
havior varies greatly among people [12]. Third, people’s play does
not generally adhere to traditional game-theoretic equilibria [13, 3].
Fourth, humans often make mistakes with regard to their reported
utility function[2].

To explain these findings, researchers in behavioral economics
have suggested that people’s preferences in settings that include
other decision-makers are affected by others’ outcome as well as
their own [15]. For example, in particular contexts, some buyers
reject proposals that are highly beneficial to the sellers, even though
they are beneficial to the buyers, because they see them as unfair.
To be able to interact successfully with individuals, artificial agents
must be able to learn how these social preferences affect thebidding
behavior of different people.

This work presents a machine learning approach for meeting
these challenges. Our study uses a series of take-it-or-leave-it ne-
gotiation scenarios in which one agent proposes a trade consisting
of multiple goods to a responder agent who must accept or reject
the trade. In previous work, we showed that a computer player
that used a decision theoretic model to reason about the respon-
der’s social preferences outperformed other computer players that
used standard game theoretic equilibria [10]. This work formalizes
the task of bidding from the proposer’s perspective withoutusing
a decision-theoretic model. It defines aselection processwhere a
number of candidate proposals are available to the proposerand



one of them is selected as the chosen bid. Previously we were
only concerned with predicting whether or not the proposer’s of-
fer was accepted by the responder. In this work, we need to predict
the outcome of a multi-way decision process where there are many
possible offers for the proposer to choose from.

Each candidate is associated with features, that affect whether or
not the candidate is chosen. In general, these features can repre-
sent anything about the decision-making that is salient to agents’
models. In this work, these features are players’ social preferences,
defined in terms of functions over their payoffs.

In this work we address the following three tasks. First, we show
how to predict the chosen bid given the features of all the candidate
proposals. Second, we present and evaluate two algorithms for
learning a selection process from data. One of the algorithms uses
supervised learning, where an instance consists of the attributes of
each proposal and the classification is whether or not the proposal
was the chosen bid. In this approach, the probability of a particular
candidate offer being selected does not depend on the quality of the
attributes of other candidates. The other algorithm learnsfrom
eachpair of candidate proposals, where one was the chosen bid
and one was not. In this way, it learns from individual candidates,
but also takes into account the quality of other candidates.

To capture the behavior of different types of people, both algo-
rithms use a mixture model of belief networks, each associated with
a separate utility function that is a weighted summation of its so-
cial preferences. In this way, each network predicts how likely a
particular type of person is to bid any given proposal. The feature
weights for each type are updated by using standard gradientde-
scent. Because the type of a person is not observed, we estimate a
probability distribution over the type space using a technique that
is inspired by the Expectation Maximization algorithm [8].

These algorithms are evaluated on real data that was obtained by
observing people negotiate with each other in laboratory settings as
well as synthetic data that was designed by the researchers by sam-
pling from pre-generated selection models. We expected thesec-
ond algorithm to be better suited for learning selection processes
because it learns from candidate proposals that arenot chosen as
well the chosen bid. This gives us vital information to use inthe
learning process. For example, if there are many candidate propos-
als with feature values that are similar to those of the chosen bid,
their likelihood should be higher than that of a proposal whose fea-
ture values arelesssimilar to the chosen bid. The results confirm
our hypothesis, in that they show that the algorithm that learns from
pairs of candidates performs much better for both data sets.In par-
ticular, the second algorithm achieved near optimal performance on
the synthetic data set.

The third task is to infer the features of a proposal given thefact
that it was the chosen bid. For example, suppose that the contracts
in the TAC SCM domain specified minimal hardware configura-
tions. Given a winning bid and a prior distribution over the possible
configuration values, it might be possible for agents to infer that the
RAM size feature of the winning bid was significantly larger than
the minimal required RAM size. They could then tailor their future
bids to include larger RAM components.

As a baseline, we present an importance sampling algorithm that
weights the features of a candidate proposal by the probability that
the object is the winner. We then discuss several alternative ap-
proximation algorithms that are much quicker than the baseline al-
gorithm. As a result, many more samples may be generated in the
same amount of time, leading to great increases in accuracy over
the baseline.

While this paper focuses on the application of selection pro-
cesses to negotiation, many domains in which a chosen element

is selected out of a set of candidates can be modeled as selec-
tion processes. For example, the winner of a racing match can
be modeled as the chosen candidate out of a set of participants.
The features in this example might be skill, age and years of train-
ing. Another example might be choosing a spokesperson for a large
company where the skills of the spokesperson are the features. We
can thus infer that the chosen individual had good communication
skills. Lastly, selection processes can also be of use to behavioral
economists who wish to describe and predict how behavior differs
across cultures and social contexts. The mixture models we present
in this work can be used to capture how societies differ in their ne-
gotiation behavior.

2. RELATED WORK
Several works provided models for predicting the probability of

acceptance of proposals in negotiation. Most of these studied auto-
matic agents. Pardoe and Stone [19] used data obtained from past
trading agent competitions to learn the probability that a customer
will accept a given bid price. They estimated a separate probability
distribution for each range within the possible bid prices and then
converted these probabilities to a density function that was biased
towards assigning a higher probability of acceptance to lower bids.
Lawrence [14] used a naive Bayes classifier to learn the winning
probability of seller bids given features relating to buyercharacter-
istics (type of company, past profitability, etc...) The optimal seller
price maximized its expected profit given the winning probabilities.
All of these works learned a two-way decision process – whether to
accept or reject a bid based on past history. We consider a different
problem of choosing between multiple candidates where the like-
lihood of different candidates depends on the relationshipbetween
their features.

Das et al. [7] showed that computer agents playing stochastic
strategies that are based on observed market data could outperform
humans in a continuous double auction. This work compared be-
tween the performance of automatic agents with the collective per-
formance of people and did not consider social factors. Our criteria
of performance is not whether a computer agent can beat humans
on average, but the predictive accuracy of a computer model that
uses social preferences to predictindividual bids of people. Also
we use a different domain, in which multi-valued goods can be
traded by players.

Because we represent social preferences in agents’ utilityfunc-
tions, Our work is related to recent approaches for learningagents’
utility functions. Ng and Russell [18] defined the inverse reinforce-
ment learning problem as to infer an agent’s utility function by ob-
serving its behavior. The main technique was to view the agent’s
decisions as defining a set of linear constraints on the utility func-
tions. This approach relied explicitly on the assumption that the
agent is fully rational, and therefore any decision constrains its util-
ity function. Chajewskaet al. [6], like Ng and Russell, learned a
utility function by observing past decisions, but they alsoallowed
a prior probability distribution over the space of utility functions.
They also made the assumption that the agent is rational.

In contrast, we do not assume that a decision maker is rational,
for two reasons. First, as stated in Section 1, people may choose
actions that are contrary to their perceived utility functions [2]. We
wish to model the behavior of real agents, so we need to allow for
the possibility of mistakes. Second, choosing an action is only one
kind of selection process, and we wish are approach to apply to
selection processes in general, including those not resulting from a
decision-making problem.

Lastly, Chajewska and Koller [5] used a probabilistic approach
to learn the structure of utility functions from a database of partially



elicited utility functions of individuals. This is a different problem
from the one we study, as we are not given any explicit information
about the utility function, we are only told which action is selected.

3. SELECTION PROCESSES
We begin by presenting notation. There is a set ofN data in-

stancesd(1), . . . , d(N). Each instanced(k) represents one selection
process, consisting of a setm(k) of candidate proposalsc(k)

1 , . . . , c
(k)

m(k)

and a chosen bid that that is denoted asc
(k)
∗ . We usually drop the

superscript(k) where unambiguous and writec1, . . . , cm for the
set of candidates. Each candidate proposalcj has a set ofn fea-
turesxj = xj:1, . . . , xj:n, where each featurexj:i is a real number.
Following our convention, we usex∗ to denote the features of the
chosen bid. In general,i will be used to index features,j will be
used to index candidates within an instance, andk will be used to
index instances.

Our task is to develop a model for selecting the chosen bidc∗
from the set of candidate proposals in each instance. For anycan-
didate, we letS(cj) denote the decision made for candidate pro-
posalcj according to the model. This decision can be to select or
not to select the candidate as the chosen bid. Given the features of
all the candidates, we assume that one of several types is used for
making each decision. A type represents a particular way of mak-
ing a selection, and there may be more than one way of deciding
a particular selection process. For example, two types of agents in
the TAC SCM domain can make different bids for supplying the
same hardware configuration because they weigh the configuration
features in different way.

One approach for representing this diversity in the model isto
define a separate type for every instance. This captures the fact
that each instance is a separate negotiation process that isindepen-
dent from the other instances. In this case the number of types
would have to equal the size of the training set, making it impossi-
ble to learn. Instead, we say that agents fall into a finite number of
types. There is a prior probability distribution over types, denoted
by P (τ ). Once a type is selected according toP (τ ) it is used to se-
lect the chosen bid. According to our model, the same type is used
for making the decision for all candidate proposal in an instance.
This is because it is the same agent that picks the chosen bid and at
the same time rejects all the other proposals in that instance.

Associated with each type is a set of weights. The weightwτ
i

is the weight associated with featurei according to typeτ . Given
the candidate features, and the type, we compute a score for each
candidate offer, which is a weighted sum of its feature values. For-
mally, we writeuτ for the scoring function associated with each
typeτ , and define

uτ
j = uτ (xj) =

n
X

i=1

wτ
i xj:i

Now, consider first a simple selection process in which thereare
only two candidate proposals. For a fully rational decisionmaker,
the chosen bid will be the proposal associated with the higher util-
ity. To capture the fact that people sometimes make mistakeswith
respect to their utility function, we can allow noise to exist in the
selection process, by making the probability of the chosen bid de-
pend on the sigmoid function. That is

P (S(c) = chosen|x, τ ) =
1

1 + e−uτ (x)
(1)

This function makes sense, because when the score is large and
positive, the probability that a particular proposals is the chosen bid
tends towards 1; when it is large and negative this probability tends

towards 0. At 0, the proposer is completely indifferent between the
two possibilities and has a probability of1

2
of choosing either. The

closer the score is to 0, the more likely the proposer will make a
mistake and choose the proposal with lower expected utility.

However, we need to generalize this to a selection process which
involves more than two candidate proposals. To this end, we turn
the scores of proposals into probabilities by making the probability
that candidatecj is selected to be the chosen offer be proportional
to euτ

j . That is

P (S(cj) = chosen|x1, . . . ,xm, τ ) =
euτ (xj )

Pm

j=1 euτ (xj)
(2)

This soft-max function is helpful in two ways. First, it is a gen-
eralization of the sigmoid model for the simpler model. Indeed, if
the decision comes down to two candidates, we have

P (S(c1) = chosen|S(c1)orS(c2) = chosen,x1,x2, τ ) = e
uτ
1

e
uτ
1 +e

uτ
2

= 1

1+e
−(uτ

1
−uτ

2
)

(3)
which is just the sigmoid function using the difference between
scores ofc1 andc2.

Second, by using the soft-max function, we make the probability
of each candidate offer to depend not only on its own features, but
also on the features of the other candidates which were not chosen.

4. LEARNING TO CHOOSE BIDS
The learning task is to simultaneously learn the prior distribution

over typeP (τ ), as well as the feature weightswτ associated each
type. We are given the features of each candidate, and a classifi-
cation representing whether the candidate proposal was thechosen
bid. We define mixture model over types, where each type is asso-
ciated with a single-layer sigmoid belief network [17], butthe type
that generates each data instance is not observed. We present two
algorithms for providing a mapping from the candidate features to
a classification.

The first algorithm, calledLEARN-SUPERVISEDis shown in Fig-
ure 1. It uses supervised learning where each candidate offer is
viewed as a separate training instance. The sigmoid function of
Equation 1 is used to compute the predicted outputP (S(cj)), which
is the likelihood that a particular candidate proposal is selected as
the chosen bid. To learn the feature weights of the utility function
associated with each type we use gradient descent. We make the
true output 1 if the candidate was selected as the chosen bid and 0
if candidate was not selected. The error function to minimize for
each candidatecj is the absolute difference between the true output
and the predicted outputP (S(cj)).

For each type, we compute the posterior probabilityP (τ | S(cj))
of generating the candidatecj using Bayes rule. This probability is
then used to adjust the learning rate for the gradient descent step.
Intuitively, if a type is more likely to have been used for rejecting
or selecting a candidate, that candidate should have more influence
in learning the feature weights of that type. Similarly, if atype is
unlikely to have been used for a candidate, the candidate should
have little impact on the features weights. Therefore the learning
rate is made proportional to the probability that the type was used
to make this decision. Once the learning rate has been determined,
a standard gradient descent update is performed.

The second algorithm views each data instance as consistingof
all the possible candidate proposals, together with the identity of
the selected candidate. The algorithm, calledLEARN-PAIRS, is pre-
sented in Figure 2. It compares the features of the selected candi-
datec∗ with those of every other candidatecj , and treats the choice



Repeat until convergence of parameters:
For each instanced(k):

For each candidatecj ∈ d(k):
For each typeτ :

Let uτ
j =

Pn

i=1 wτ
i xj:i

If S(cj) = chosen,P (S(cj) | τ,xj) = 1

1+e
−uτ

j

ElseP (S(cj) | τ,xj) = 1− 1

1+e
−uτ

j

For each typeτ :

P (τ | S(cj),xj) =
P (S(cj)|τ,xj)P (τ)

P

τ P (S(cj)|τ,xj)P (τ)

Let learning rateατ = α ∗ P (τ | S(cj),xj)
p = P (S(cj) = chosen| τ,xj) = 1

1+e
−uτ

j

For each featurewτ
i :

If S(cj) = chosen
wτ

i ← wτ
i + ατ ∗ xj:i ∗ (1− p)

Else
wτ

i ← wτ
i + ατ ∗ xj:i ∗ (−p)

ReestimateP (τ ) =
PN

k=1

Pm(k)

j=1 P (τ |S(c
(k)
j

),xj )
P

N
k=1

m(k)

Figure 1: Algorithm LEARN -SUPERVISED

between them as a two-way decision. The utility to use in mak-
ing the decision is the difference between the individual utilities uτ

∗

anduτ
j . Because the score is a linear function of the features, this

difference is equal to the result of applying the scoring functionuτ

to the differences between the features. Therefore, the predicted
output is simply the probability ofc∗ being the chosen candidate,
given thatcj is not chosen, which can be computed as

P (S(c∗) = chosen| c∗ or S(cj) = chosen,x∗,xj) =
1

1 + e−(uτ
∗
−uτ

j
)

The error function to minimize is always1 minus this quantity,
which is just applying Equation 3 to two decisions. The learning
rate for the gradient descent step is computed in a similar fashion
to algorithmLEARN-PAIRS.

Both algorithms need to compute the distribution over the type
space. Because the actual type that generates each instanceis un-
known, we compute a new distribution over the type space by ag-
gregating the likelihood of each and every data instance, and then
normalizing. This process is similar in fashion to the Expectation
Maximization algorithm. After all candidates for all instances have
been processed, new values ofP (τ ) are estimated by the Bayes
rule using the previously computedP (τ |S(cj),xj).

4.1 Experimental Results
We evaluated the algorithms using data originating from theCol-

ored Trails (CT) framework [11], in which two players must ex-
change resources in order to achieve their goals. Each game con-
sists of a one-shot deal, in which one of the players, deemed the
allocator, must make an offer to the other player, deemed thedelib-
erator, which can in turn accept or reject the offer. The deliberator
is not allowed to counter the allocator’s offer with anotherproposal.
The score that each player receives if no offer is made is identical
to the score each player receives if the offer is rejected by the delib-
erator. We refer to this event as theno negotiation alternative. The
score that each player receives if the offer is accepted by the delib-
erator is referred to as theproposed outcomescore. The outcome of
the game is determined by an offer-response pair, and each player’s
score in the game depends solely on his or her own performance.
Games can differ in the resource players hold and the dependency

Repeat until convergence of parameters:
For each instanced(k):

For each typeτ :
For each candidatecj ∈ d(k), let uτ

j =
Pn

i=1 wτ
i xj:i

P (c∗chosen| τ,x1, . . . ,xm) = euτ
∗/

Pm

j=1 euτ
j

For each typeτ :
P (τ | S(c∗) = chosen,x1, . . . ,xm) =

P (S(c∗)=chosen|τ,x1,...,xm)P (τ)
P

τ P (S(c∗)=chosen|τ,x1,...,xm)P (τ)

Let learning rateατ = α ∗ P (τ | S(c∗) = chosen,x1, . . . ,xm)

For eachcj ∈ d(k) wherecj 6= c∗:
For each featurei, let di = x∗:i − xj:i

Let udiff =
P

i wτ
i di = uτ

∗ − uτ
j

Let p = P (S(c∗) = chosen| S(c∗)or S(cj) = chosen,x∗,xj)
= 1/(1 + e−udiff )

For each featurewτ
i :

wτ
i = wτ

i + ατ ∗ di ∗ (1− p)
Reestimate

P (τ ) = 1
N

PN

k=1 P (τ | S(c
(k)
∗ ) = chosen,x(k)

1 , . . . ,x
(k)

m(k) )

Figure 2: Algorithm LEARN -PAIRS

relationships that hold between the players.
Each instance in our data set consisted of a CT game, in which

the candidates were the set of possible proposals for the allocator
in the game, and the chosen bid. There were about 30 candidates
in each instance. LetNNA andNND be the no-negotiation al-
ternative scores for the allocator and deliberator, andPOA and
POD , the proposed outcome scores The properties of each pro-
posal represents four social preferences that were computed as a
function of players’ scores: the individual benefit to the alloca-
tor if the proposal is acceptedPOD −NND ; the joint benefit for
both players(POD + POA) − (NND + NNA); the degree to
which the outcome benefits the allocator more than the deliberator
POD −POA; and the advantageousness of the trade to the alloca-
tor (POD −NND)− (POA −NNA).

We evaluated the algorithms using real data, generated by people
playing CT games in a lab setting, and synthetic data, where each
instance was generated by sampling a CT game, generating theset
of candidate proposals for the game and choosing a bid according
to a predetermined model. There were 169 instances in the real
data set, whereas the synthetic data set included 1,000 instances. In
both cases, we trained and tested the algorithms separately, using
ten-fold cross validation. We evaluated the algorithms on aheld-
out data set using two metrics. First, “Likelihood” measures the
average probability specified by the learned model that the chosen
bid wins (the average is the geometric mean over all instances in the
test set). Second, “Accuracy” measures the frequency with which
the predicted bid, i.e. the candidate proposal with highestproba-
bility of winning, was actually the chosen candidate in the test set.
With 30 candidates to choose from, we would expect both num-
bers to be quite small, but the relative sizes of the numbers indicate
which algorithm performs better.

Table 1 compares the performance ofLEARN-PAIRS to LEARN-
SUPERVISEDon real data, when using one, two and three types to
learn a selection process. It also includes a naive predictor as a
baseline that assumes a uniform probability distribution over all
candidates for each instance. The relative sizes of the numbers
indicate which algorithm performs better.

As shown in the table, while both algorithms performed better
than the baseline, the performance ofLEARN-PAIRS was consis-



tently better than that ofLEARN-SUPERVISEDfor both evaluation
metrics. In addition, both algorithms improved in one metric as the
number of types increased.

Algorithm Likelihood Accuracy
UNIFORM 0.0318 0.0375

One type LEARN-SUPERVISED 0.0345 0.0562
LEARN-PAIRS 0.0483 0.0812

Two types LEARN-SUPERVISED 0.0344 0.0625
LEARN-PAIRS 0.0591 0.0812

Three types LEARN-SUPERVISED 0.0341 0.0688
LEARN-PAIRS 0.0609 0.0812

Table 1: Performance comparison on real data

Table 2 evaluates performance of both algorithms on synthetic
data. Here, we ran in an experiment in which a model of 3 types
was used to generate the data and 3 types were used by the learning
algorithms. We also report the performance of the actual model
used to generate the data, which constitutes a gold standard. We
ran experiments with many different numbers of types, both for the
actual model and the learning algorithm, with comparable results.
Results show that the likelihood ofLEARN-PAIRS is much better
than that ofLEARN-SUPERVISED, and is close to the performance
represented by the gold standard. Interestingly, both algorithms
have the same accuracy as the gold standard. This suggests that
simply predicting the chosen bid is an easier task than determining
the probability of selecting each candidate as the chosen bid.

One possible explanation about this difference in performance
of the algorithms in the CT domain is thatLEARN-SUPERVISED

ignores the dependencies between candidate proposals. It assumes
that the probability a candidate is accepted depends only onits own
features and not on the features of all the other candidates.In re-
ality, if the other candidate proposals are exceptionally good, this
candidate should be less likely to be the chosen bid, and conversely
if they are bad. By ignoring this fact,LEARN-SUPERVISEDis miss-
ing crucial information relevant to the selection of the chosen bid.
Furthermore, the probabilities of acceptance for all candidates in
an instance will in general not sum to 1, and a further drawback of
LEARN-SUPERVISEDis that a different type may be used for the de-
cision for each candidate. In contrast,LEARN-SUPERVISEDmodels
the dependencies between candidates, and assumes the same type
makes the decision for each instance.

Algorithm Likelihood Accuracy
UNIFORM 0.0320 0.0374

LEARN-SUPERVISED 0.0346 0.2212
LEARN-PAIRS 0.0603 0.2212

ACTUAL MODEL 0.0620 0.2212

Table 2: Performance comparison on synthetic data

5. INFERRING THE PROPERTIES OF A
CHOSEN BID

In this section we consider the problem of inferring the prop-
erties of a proposal from the fact that it was the chosen bid. We
assume now that the model is known, and that we have a prior
probability distribution over the properties of any candidate pro-
posal. For now, we do not assume that different candidates have
the same prior. If a given proposal happens to be the chosen bid,
it means that those property values that lead to a higher score are

more likely. The task is to obtain the posterior distribution over the
properties of a target proposal, given that it is the chosen bid.

As a baseline, we propose a simple importance sampling method
to achieve this task. Let the target candidate bec1. We begin by
sampling from the prior distribution for each candidate including
the target, to obtain featuresx1 for the target andxj for each of
the other candidatescj . We also sample the typeτ used to make
the decision from the probability distributionP (τ ). We compute
the score for each candidateuτ

j =
P

i
wτ

i xj:i. We then compute

the probabilityp = e
uτ
1

P

m
j=1

e
uτ

j
that the target candidate was cho-

sen. We then weight the sample consisting of the featuresx1 by
the probabilityp. We thus obtain a set of weighted samples that is
an approximation to the posterior distribution over features of the
target candidate. This set of samples can be used to obtain expec-
tations of the features we are interested in.

This method, which we callIMPORTANCE-SAMPLE, requires
sampling all the candidate proposals. We can do better by making
the observation that the probability that a candidate is thechosen
bid depend most heavily on its own score. Once the type has been
fixed, and the score of the target candidate has been determined, we
can attempt to estimate the probability that the target is the chosen
bid without sampling the other candidates. This approach has the
advantage that because only one candidate proposals needs to be
sampled, many more samples can be taken for the same running
time. On the other hand, because this approach uses an estimate
of the probability that the target candidate is the winner, rather than
sampling, it is biased. The degree of the bias depends on the quality
of the estimates.

There are several ways to estimate the probability that the target
proposal is the chosen bid, given its features. We wish to estimate

P (c1 wins|x1, τ ) = Ex2,...,xm [
euτ (x1)

euτ (x1) +
Pm

j=2 euτ (xj)
] (4)

whereEx2,...,xm [f ] denotes the expectation off with respect to
x2, ..., xm. This probability is hard to estimate directly without
samplingx2, . . . ,xm many times for eachx1, which is precisely
what we wish to avoid. However, we can hope to approximate it,
either with a method that does not samplex2, . . . , xm at all, or with
a method that only samplesx2, . . . ,xm a fixed number of times,
and amortizes that sampling over all samples ofx1. Our first ap-
proximation comes from the consideration that in the case where
c1 is unlikely to be the winner,euτ (x1) will usually be small com-

pared to
Pm

j=2 euτ (xj ). Therefore the ratio
P (c

(1)
1 wins|x(1)

1 ,τ)

P (c
(2)
1 wins|x(2)

1 ,τ)
of

the probability the target candidate wins for two differentsamples
x
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1 andx

(2)
1 will usually be approximately equal to
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)
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1 )
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(2)
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(5)

Since the only thing that is required to get good weighted samples
is that the ratios between the weights be correct, we can simply use

euτ (x
(k)
1 ) as the weight of thekth sample. The scheme that uses

these weights is calledSAMPLE-SIMPLE.
However, this is a very crude approximation. In particular,the

approximation is inaccurate in the cases whereeuτ (x1) is large. In
such cases, the weights will be biased upwards, because we are
ignoring theeuτ (x1) term in the denominator of Equation 4 which
is no longer negligible. A better approximation can be obtained
by not ignoring theeuτ (x1) term in the denominator. Instead, we



approximate Equation 4 by

euτ (x1)

euτ (x1) + Ex2,...,xm [
Pm

j=2 euτ (xj )]
(6)

This scheme, calledSAMPLE-EXPECT, uses a preprocessing step
in which a number of samples ofx2, ...xm are taken to estimate
Ex2,...,xm [

Pm

j=2 euτ (xj )] for each typeτ . The estimate for the
selected type is then substituted in Formula 6 to obtain the approx-
imate weight for samplex1.

Of course, simply moving the expectation inwards is likely to
produce an inaccurate approximation. In particular, the expectation
of Equation 4 is likely to be dominated by cases where

Pm

j=2 euτ (xj )

is small, not by the expected value of
Pm

j=2 euτ (xj). This suggests
a different approximation scheme, where we use small valuesof
Pm

j=2 euτ (xj ). In this scheme, calledSAMPLE-MIN , we take a
certain number of samples ofx2, ..., xm in a preprocessing step.
From those samples we take the minimum value of

Pm

j=2 euτ (xj )

for each type. We use that value for the selected type insteadof
the expectation in Equation 6 to compute the weight for sample
x1. An interesting question in this scheme is how many samples
of x2, ...xm to take in the preprocessing step. Even if we had in-
finite time, taking more samples would not necessarily be a good
thing, because the minimum may become too small, yielding a less
accurate approximation.

Thus far, we have assumed there is a particular target proposal
whose features we want to infer. But another kind of inference
problem is to infer the features of a generic proposal, giventhe fact
that it was chosen. For example, the runners in a race might include
three runners whom we know by name and who have a reputation,
as well as fifteen other anonymous, generic runners. Supposenow
that we want to infer the posterior probability distribution over the
properties of an anonymous candidate. One approach would be
simply to choose one of the anonymous candidates to be our target
candidate, and proceed using one of the methods described earlier.
But this would be unnecessarily wasteful — it would ignore the
probability that one of the other anonymous candidates is chosen
as the winner. In the extreme case, all the candidates have the same
prior distribution over features. In that case the probability that
one of the anonymous candidates is selected is 1, and every sample
should have a weight of 1.

A better approach, assuming there is a reasonable number of
anonymous candidates, is to use a rejection sampling method, which
we callSAMPLE-GENERIC. We sample a type fromP (τ ), and fea-
tures for each of the candidates, as in the baselineIMPORTANCE-
SAMPLE method. We then select a winning candidate using the
model. If the winner is an anonymous candidate with the priorwe
are interested in, we keep its features as a sample. If not, wereject
the sample.

It is worth examining the advantage of this approach more closely.
The advantage overIMPORTANCE-SAMPLE is indeed what we have
stated, that each sample can be expected to have a much higher
weight. The advantage of this approach over the estimated schemes
SAMPLE-SIMPLE, SAMPLE-EXPECTandSAMPLE-MIN is not that
the samples taken have higher weight, since with those schemes
more samples could be taken, enough so that their total weight is
equal to that ofSAMPLE-GENERIC. Rather, it comes from the fact
thatSAMPLE-GENERICdoes not use a biased approximation of the
probability that the target candidate wins.

5.1 Experimental Results
We first tested the algorithms for inferring the properties of a

winning candidate using synthetic data, where there is onlyone

featurex, one type, and the scoring function is simplyu = x. The
prior over the feature is a Gaussian.

Probability thatc1 wins
0.001 0.01 0.1

Algorithm Samples Error Error Error
IMPORTANCE-SAMPLE 100 0.1770 0.1689 0.1454

SAMPLE-SIMPLE 1000 0.0576 0.0610 0.2412
SAMPLE-EXPECT 900 0.0828 0.0586 0.0554

SAMPLE-MIN 900 0.0680 0.0577 0.0806

Figure 3: Relative error rates for the different algorithms on
three experiments, varying the probability that c1 wins

We considered three cases, varying the probability that thetar-
get candidatec1 will be the winning candidate from 0.001 to 0.1.
Figure 3 shows the results for an experiment in which the number
of samples was chosen to ensure that each algorithm had the same
running time. We report the relative error of the estimated expected
value of the featurex of c1 compared to an estimate of ground truth
obtained by taking 1,000,000 samples and keeping the ones where
c1 wins. The results are averaged over 10,000 runs. Also shown is
the number of samples used by each algorithm.

We see that in the first case, where there is a very low probability
of c1 winning, algorithmSAMPLE-SIMPLE is a very good approxi-
mation and has the best performance. On the other hand, in thethird
case where the probability is quite high,SAMPLE-SIMPLEperforms
very poorly indeed. These results are as one would expect, because
the approximation of Equation 5 assumes that the score of thetar-
get candidate is very small relative to the scores of the other can-
didates. Meanwhile, algorithmsSAMPLE-EXPECT and SAMPLE-
MIN , which do not make this assumption, significantly outperform
IMPORTANCE-SAMPLE in all three cases.SAMPLE-MIN is slightly
better for low probabilities ofc1 winning andSAMPLE-EXPECTis
better for high probabilities.

Algorithm Signed Error Absolute Error
IMPORTANCE-SAMPLE -0.0069 0.0232

SAMPLE-SIMPLE 0.0242 0.0277
SAMPLE-EXPECT 0.0257 0.0259

SAMPLE-MIN 0.0239 0.0239
SAMPLE-GENERIC -0.0062 0.0212

Figure 4: Signed and absolute errors for the five algorithms on
the Colored Trails model

Finally, we compare the algorithms, and alsoSAMPLE-GENERIC,
on a richer model learned from the Colored Trails data. Each in-
stance now consisted of the candidate proposals for a Colored Trails
game. Because all proposals have the same prior, we can useSAMPLE-
GENERIC here. Note that now the candidates are correlated with
each other — if a game has one high-scoring proposal it is likely to
have more. This fact will hurt the algorithms that only sample c1,
because they will not discover the correlations between candidates.
The results are shown in Figure 4. The figure shows both the aver-
age signed errors, and the average absolute errors, of the estimate
of the individual utility feature of the winning proposal, taken over
100 runs.SAMPLE-GENERICis the best performer. Examining the
signed errors, we see that they are very high and positive forall
three algorithms that only samplec1. These three algorithms are
consistently overestimating, and are suffering from an upward bias
which causes them to underperform the other two algorithms even
though they use many more samples.



6. CONCLUSION AND FUTURE WORK
We presented a model used to predict selection processes, and

two learning algorithms for learning the parameters of a selection
process from data. We showed that a model which reasons about
dependencies between candidates is superior to one that does not.
We also presented several methods for inferring the properties of
a candidate from the fact that it won, and showed that algorithms
that only sample the target candidate perform much better than an
algorithm that samples all candidates.

In other domains, it is possible for zero or more than one can-
didates to be chosen but the choice of one candidate does havea
bearing on whether other candidates are chosen. For example, con-
sider hiring a candidate to fill a faculty position. If the search turns
up more than one outstanding candidate, more than one offer will
be made. If the committee feels that there are no good candidates,
no offer will be made. But in general the candidates are in compe-
tition with each other, and if an offer is made to one candidate that
reduces the probability that one will be made to another candidate.
In future, we intend to model these types of processes.

Selection processes can naturally be accommodated in proba-
bilistic models. There is a close relationship between selection pro-
cesses and probabilistic relational models (PRMs) [9]. In aPRM,
an objectX may be related to another objectY via a complex at-
tribute. We may have uncertainty as to which other objectY the
objectX is related to. This is known as reference uncertainty. In a
PRM, this uncertainty has been traditionally modeled by specifying
an explicit probability distribution over the possible objectsY . The
distribution over possible objects traditionally does notdepend on
the attributes of the possible objects. However, it is natural to make
the choice of possible objectY a selection process, which depends
on the attributes of the possible objects. For example, we may have
a Jobobject. This object will have a complex attributeCandidate,
which is a multi-valued attribute. TheJobwill be related to a num-
ber of Personobjects via theCandidateattribute. In addition, the
Jobobject will have anOccupantattribute, which is single-valued.
We have reference uncertainty with regards to the value of the Oc-
cupantattribute. ModelingOccupantas a selection process, will
make the candidates the values of theCandidateattribute, and the
winner depends on the features of the candidates.
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