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ABSTRACT

This paper presents a statistical learning approach toigiregl
people’s bidding behavior in negotiation. Our study cassiE
multiple 2-player negotiation scenarios where bids of ruatued
goods can be accepted or rejected. The bidding task is faeadal
as a selection process in which a proposer player choosesgla si
bid to offer to a responder player from a set of candidate gsals.
Each candidate is associated with features that affecthehetr
not it is the chosen bid. These features represent sociak&hat
affect people’s play. We present and compare several #hgosi
for predicting the chosen bid and for learning a model frotada
Data collection and evaluation of these algorithms is perém on
both human and synthetic data sets. Results on both datshests
that an algorithm that reasons about dependencies betveéeat-
tures of candidate proposals is significantly more sucuokisn
an algorithm which assumes that candidates are independtent
the synthetic data set, this algorithm achieved near opterdor-
mance. We also study the problem of inferring the featurea of
proposal given the fact that it was the chosen bid. A basétime
portance sampling algorithm is first presented, and therpeoed
with several approximations that attain much better peréorce.

1. INTRODUCTION

Recent developments in automated decision-making arengaki
it possible for agents to negotiate with each other in envirents
of increasing complexity, such as supply chains and mdraeed
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scheduling [16, 1]. Atthe same time, computer systems arerhe
ing commonplace in our every day lives, and settings in wbarh-
puters and people make decisions together are increagingig-
lent [4]. One area in which both of these trends interleaedds-
tronic commerce, where computers acting as autonomougsagen
or as proxies for individual people, are changing the waydgoo
and services are traded on the Internet [21].

One of the main challenges for agents that negotiate iregfiat
environments is reasoning about the bidding strategiegtars.
For example, in the Supply Chain domain of the Trading Agent
Competition [1] (TAC SCM), agents bid competing offers faps
plying a series of multi-valued contracts, each satisfymginimal
configuration of computer hardware resources. The agehttint
lowest offer is selected to supply each contract after pingtthe
necessary resources. Agents cannot observe each ottagsréi
sources or the winning bid configuration. For agents to aditeir
opponents without sacrificing future revenue, they musttibe @
predict their opponents’ bids for current and future cartsa

Although much work has been done on predicting the bidding
and pricing behavior of automatic agents in negotiation 2@
19], modeling people’s bidding behavior presents severalchal-
lenges. First, social factors such as altruism, self-egieand fair-
ness affect people’s negotiation strategies [3]. Secoerdplp’s
behavior is diverse — the extent to which social factorscaffee-
havior varies greatly among people [12]. Third, people&yploes
not generally adhere to traditional game-theoretic eloudi[13, 3].
Fourth, humans often make mistakes with regard to theirrtego
utility function[2].

To explain these findings, researchers in behavioral ecmsom
have suggested that people’s preferences in settingsnblade
other decision-makers are affected by others’ outcome édsawe
their own [15]. For example, in particular contexts, somgena
reject proposals that are highly beneficial to the selleen ¢hough
they are beneficial to the buyers, because they see themais unf
To be able to interact successfully with individuals, actifi agents
must be able to learn how these social preferences affebidtang
behavior of different people.

This work presents a machine learning approach for meeting
these challenges. Our study uses a series of take-it-ee-itae-
gotiation scenarios in which one agent proposes a tradéstiongs
of multiple goods to a responder agent who must accept octreje
the trade. In previous work, we showed that a computer player
that used a decision theoretic model to reason about themesp
der’s social preferences outperformed other computereptathat
used standard game theoretic equilibria [10]. This workializes
the task of bidding from the proposer’s perspective withaihg
a decision-theoretic model. It definesealection proceswhere a
number of candidate proposals are available to the proposer



one of them is selected as the chosen bid. Previously we wereis selected out of a set of candidates can be modeled as selec-

only concerned with predicting whether or not the propasef:
fer was accepted by the responder. In this work, we need thqbre
the outcome of a multi-way decision process where there arg/m
possible offers for the proposer to choose from.

Each candidate is associated with features, that affeaheher
not the candidate is chosen. In general, these featuresepagr
sent anything about the decision-making that is saliengents’
models. In this work, these features are players’ socidépeaces,
defined in terms of functions over their payoffs.

In this work we address the following three tasks. First, ivens
how to predict the chosen bid given the features of all thelickate
proposals. Second, we present and evaluate two algoritams f
learning a selection process from data. One of the algosithses
supervised learning, where an instance consists of thbudts of
each proposal and the classification is whether or not theosed
was the chosen bid. In this approach, the probability of Hqdar
candidate offer being selected does not depend on theyjabttie
attributes of other candidates. The other algorithm le&m®
eachpair of candidate proposals, where one was the chosen bid
and one was not. In this way, it learns from individual caatés,
but also takes into account the quality of other candidates.

To capture the behavior of different types of people, bogjoal
rithms use a mixture model of belief networks, each assediatth
a separate utility function that is a weighted summationt®to-
cial preferences. In this way, each network predicts hoetyila
particular type of person is to bid any given proposal. Tlafiee
weights for each type are updated by using standard gradeent
scent. Because the type of a person is not observed, we &stima
probability distribution over the type space using a teghaithat
is inspired by the Expectation Maximization algorithm [8].

These algorithms are evaluated on real data that was otitaine
observing people negotiate with each other in laboratdtings as
well as synthetic data that was designed by the researchsent-
pling from pre-generated selection models. We expectedehe
ond algorithm to be better suited for learning selectiorncpsses
because it learns from candidate proposals thahatehosen as
well the chosen bid. This gives us vital information to usehe
learning process. For example, if there are many candidapop-
als with feature values that are similar to those of the amndwe,
their likelihood should be higher than that of a proposal séhfea-
ture values aréesssimilar to the chosen bid. The results confirm
our hypothesis, in that they show that the algorithm thatieé&rom
pairs of candidates performs much better for both data befar-
ticular, the second algorithm achieved near optimal peréorce on
the synthetic data set.

The third task is to infer the features of a proposal giverfaice
that it was the chosen bid. For example, suppose that theactst
in the TAC SCM domain specified minimal hardware configura-
tions. Given a winning bid and a prior distribution over tlesgible
configuration values, it might be possible for agents torittfat the
RAM size feature of the winning bid was significantly largkan
the minimal required RAM size. They could then tailor theiture
bids to include larger RAM components.

As a baseline, we present an importance sampling algorttiam t
weights the features of a candidate proposal by the prabathiait
the object is the winner. We then discuss several altemnaip+
proximation algorithms that are much quicker than the lasell-
gorithm. As a result, many more samples may be generateein th
same amount of time, leading to great increases in accunzay o
the baseline.

While this paper focuses on the application of selection pro

cesses to negotiation, many domains in which a chosen etemen

tion processes. For example, the winner of a racing match can
be modeled as the chosen candidate out of a set of partisipant
The features in this example might be skill, age and yearsaof-t
ing. Another example might be choosing a spokesperson toga |
company where the skills of the spokesperson are the fsatwe
can thus infer that the chosen individual had good commtioita
skills. Lastly, selection processes can also be of use tavietal
economists who wish to describe and predict how behaviéerdif
across cultures and social contexts. The mixture modelsesept

in this work can be used to capture how societies differ iir the-
gotiation behavior.

2. RELATED WORK

Several works provided models for predicting the probghdf
acceptance of proposals in negotiation. Most of these estiualiito-
matic agents. Pardoe and Stone [19] used data obtained fxtstn p
trading agent competitions to learn the probability thaustamer
will accept a given bid price. They estimated a separategitity
distribution for each range within the possible bid pricad ¢hen
converted these probabilities to a density function that biased
towards assigning a higher probability of acceptance tetdvids.
Lawrence [14] used a naive Bayes classifier to learn the wgnni
probability of seller bids given features relating to bugkaracter-
istics (type of company, past profitability, etc...) Theioyl seller
price maximized its expected profit given the winning pralids.

All of these works learned a two-way decision process — wdrdth

accept or reject a bid based on past history. We considefexetit

problem of choosing between multiple candidates whereikiee |
lihood of different candidates depends on the relationbbipveen
their features.

Daset al. [7] showed that computer agents playing stochastic
strategies that are based on observed market data coulerfoutp
humans in a continuous double auction. This work compared be
tween the performance of automatic agents with the colleqtér-
formance of people and did not consider social factors. @ter@a
of performance is not whether a computer agent can beat luman
on average, but the predictive accuracy of a computer mbae! t
uses social preferences to prediudividual bids of people. Also
we use a different domain, in which multi-valued goods can be
traded by players.

Because we represent social preferences in agents’ (tility
tions, Our work is related to recent approaches for learagents’
utility functions. Ng and Russell [18] defined the inversaferce-
ment learning problem as to infer an agent’s utility funistiy ob-
serving its behavior. The main technique was to view the &gen
decisions as defining a set of linear constraints on theyufilnc-
tions. This approach relied explicitly on the assumptioat tthe
agent is fully rational, and therefore any decision comssrés util-
ity function. Chajewskaet al. [6], like Ng and Russell, learned a
utility function by observing past decisions, but they adlowed
a prior probability distribution over the space of utilityrfctions.
They also made the assumption that the agent is rational.

In contrast, we do not assume that a decision maker is rdtiona
for two reasons. First, as stated in Section 1, people magseho
actions that are contrary to their perceived utility fuoos [2]. We
wish to model the behavior of real agents, so we need to atbow f
the possibility of mistakes. Second, choosing an actiomig one
kind of selection process, and we wish are approach to apply t
selection processes in general, including those not regudtiom a
decision-making problem.

Lastly, Chajewska and Koller [5] used a probabilistic apmio
to learn the structure of utility functions from a databakpastially



elicited utility functions of individuals. This is a diffent problem
from the one we study, as we are not given any explicit infdioma
about the utility function, we are only told which action &ected.

3. SELECTION PROCESSES

We begin by presenting notation. There is a sef\oflata in-
stancesiV), ..., d™). Each instancé*) represents one selection

process, consisting of a set*) of candidate proposal§"’,. .., "),

and a chosen bid that that is denoted-43. We usually drop the
superscript(k) where unambiguous and write, . .., ¢, for the
set of candidates. Each candidate propegdias a set of: fea-
turesx; = x;.1, ..., Z;:n, Where each feature;.; is a real number.
Following our convention, we use, to denote the features of the
chosen bid. In general,will be used to index featureg, will be
used to index candidates within an instance, andll be used to
index instances.

Our task is to develop a model for selecting the chosencbid
from the set of candidate proposals in each instance. Focamy
didate, we letS(c;) denote the decision made for candidate pro-
posalc; according to the model. This decision can be to select or
not to select the candidate as the chosen bid. Given therésatf
all the candidates, we assume that one of several typesdsfose
making each decision. A type represents a particular wayas-m

towards 0. At 0, the proposer is completely indifferent begwthe
two possibilities and has a probability &fof choosing either. The
closer the score is to 0, the more likely the proposer will enak
mistake and choose the proposal with lower expected utility

However, we need to generalize this to a selection proceghwh
involves more than two candidate proposals. To this end,uwe t
the scores of proposals into probabilities by making théabdity
that candidate; is selected to be the chosen offer be proportional
to e . Thatis

et (x5)

P(S(C]) = ChOSQIT]Xl, .. W

. 7X’m? T) = (2)

This soft-max function is helpful in two ways. First, it is ery
eralization of the sigmoid model for the simpler model. ledgif
the decision comes down to two candidates, we have

T

T,
1

P(S(c1) = chosemS(c1)orS(c2) = chosenxi,x2,7) = 71?:1 I
_ 1
- l+57(u
(3)
which is just the sigmoid function using the difference betw

scores of:; andcs.
Second, by using the soft-max function, we make the proipabil
of each candidate offer to depend not only on its own featimats

ing a selection, and there may be more than one way of deciding also on the features of the other candidates which were 1osech

a particular selection process. For example, two types efitagn
the TAC SCM domain can make different bids for supplying the
same hardware configuration because they weigh the cortiigura
features in different way.

One approach for representing this diversity in the modéb is
define a separate type for every instance. This capturesatite f
that each instance is a separate negotiation process thdejzen-
dent from the other instances. In this case the number ofstype
would have to equal the size of the training set, making itdegd>
ble to learn. Instead, we say that agents fall into a finite lmemof
types. There is a prior probability distribution over typdenoted
by P(7). Once atype is selected according?¢r) it is used to se-
lect the chosen bid. According to our model, the same typses u
for making the decision for all candidate proposal in ananse.
This is because it is the same agent that picks the chosemdiata
the same time rejects all the other proposals in that instanc

Associated with each type is a set of weights. The weight
is the weight associated with featuraccording to type-. Given
the candidate features, and the type, we compute a scoradhr e
candidate offer, which is a weighted sum of its feature \&ld®r-
mally, we writeu” for the scoring function associated with each
type 7, and define

T T = T
uj =u’ (x5) = Zwi T
i=1

Now, consider first a simple selection process in which theee
only two candidate proposals. For a fully rational decigioaker,
the chosen bid will be the proposal associated with the Inigtie
ity. To capture the fact that people sometimes make mistakés
respect to their utility function, we can allow noise to éxisthe
selection process, by making the probability of the chosdrde-
pend on the sigmoid function. That is

1

P(S(C) = ChOSQITIX,T) = m

@

4. LEARNING TO CHOOSE BIDS

The learning task is to simultaneously learn the prior itigtion
over typeP(7), as well as the feature weights™ associated each
type. We are given the features of each candidate, and dfilass
cation representing whether the candidate proposal washtheen
bid. We define mixture model over types, where each type & ass
ciated with a single-layer sigmoid belief network [17], It type
that generates each data instance is not observed. We presen
algorithms for providing a mapping from the candidate feaguo
a classification.

The first algorithm, calledEARN-SUPERVISEDS shown in Fig-
ure 1. It uses supervised learning where each candidate isffe
viewed as a separate training instance. The sigmoid fumafo
Equation 1 is used to compute the predicted oufpif(c;)), which
is the likelihood that a particular candidate proposal Isded as
the chosen bid. To learn the feature weights of the utilitycfion
associated with each type we use gradient descent. We make th
true output 1 if the candidate was selected as the chosemdif a
if candidate was not selected. The error function to mingrfar
each candidate; is the absolute difference between the true output
and the predicted outp®(S(c;)).

For each type, we compute the posterior probabify | S(c;))
of generating the candidatg using Bayes rule. This probability is
then used to adjust the learning rate for the gradient déstep.
Intuitively, if a type is more likely to have been used forejng
or selecting a candidate, that candidate should have mitwerte
in learning the feature weights of that type. Similarly, ify@e is
unlikely to have been used for a candidate, the candidateldho
have little impact on the features weights. Therefore tlaeniag
rate is made proportional to the probability that the types wsed
to make this decision. Once the learning rate has been detm
a standard gradient descent update is performed.

The second algorithm views each data instance as consgdting
all the possible candidate proposals, together with the iyeoti

This function makes sense, because when the score is ladge anthe selected candidate. The algorithm, calledRN-PAIRS, is pre-

positive, the probability that a particular proposals es¢hosen bid
tends towards 1; when it is large and negative this proligbénds

sented in Figure 2. It compares the features of the selectedi-c
datec.. with those of every other candidatg, and treats the choice
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Figure 1: Algorithm LEARN-SUPERVISED Figure 2: Algorithm LEARN -PAIRS
betWeen them as a tWO-Way deCiSiOn. The Utlllty to use in mak- re|ationships that hold between the p|ayers_
ing the decision is the difference between the individuditiet . Each instance in our data set consisted of a CT game, in which
anduj. Because the score is a linear function of the features, this the candidates were the set of possible proposals for theaatir
difference is equal to the result of applying the scoringfion v” in the game, and the chosen bid. There were about 30 carslidate
to the differences between the features. Therefore, thdigbeel in each instance. LeNN4 and NNp be the no-negotiation al-
output is simply the probability of. being the chosen candidate, terpative scores for the allocator and deliberator, &@, and
given thatc; is not chosen, which can be computed as POp, the proposed outcome scores The properties of each pro-
1 posal represents four social preferences that were conh@mste
P(S(c.) = chosen| c. or S(c;) = chosenx.,x;) = TG function of players’ scores: the individual benefit to théoedh-

l+e tor if the proposal is acceptelOp — N Np; the joint benefit for
The error function to minimize is always minus this quantity, both players(POp + PO4) — (NNp + NN4); the degree to
which is just applying Equation 3 to two decisions. The |&agn which the outcome benefits the allocator more than the dalibe

rate for the gradient descent step is computed in a simitdida POp — PO 4; and the advantageousness of the trade to the alloca-
to algorithmLEARN-PAIRS. tor (POp — NNp) — (POa — NNy).
Both algorithms need to compute the distribution over thpety We evaluated the algorithms using real data, generateddpiepe

space. Because the actual type that generates each ingtamse playing CT games in a lab setting, and synthetic data, whech e
known, we compute a new distribution over the type space by ag instance was generated by sampling a CT game, generatisgithe
gregating the likelihood of each and every data instance tlaen of candidate proposals for the game and choosing a bid dogord
normalizing. This process is similar in fashion to the Expgon to a predetermined model. There were 169 instances in the rea
Maximization algorithm. After all candidates for all inatzes have data set, whereas the synthetic data set included 1,0@Mhoes. In
been processed, new values®fr) are estimated by the Bayes both cases, we trained and tested the algorithms separasity

rule using the previously computd®(7|S(c;), x;). ten-fold cross validation. We evaluated the algorithms drela-
. out data set using two metrics. First, “Likelihood” measutiee

4.1 EXpe”mental Results average probability specified by the learned model that hlosen
We evaluated the algorithms using data originating fronGbke bid wins (the average is the geometric mean over all instindhe

ored Trails (CT) framework [11], in which two players must ex test set). Second, “Accuracy” measures the frequency wiitichw
change resources in order to achieve their goals. Each game ¢ the predicted bid, i.e. the candidate proposal with higpesba-
sists of a one-shot deal, in which one of the players, deeimed t bility of winning, was actually the chosen candidate in thgt set.

allocator, must make an offer to the other player, deemedélie- With 30 candidates to choose from, we would expect both num-
erator, which can in turn accept or reject the offer. Theldehtor bers to be quite small, but the relative sizes of the numinelisate

is not allowed to counter the allocator’s offer with anothesposal. which algorithm performs better.

The score that each player receives if no offer is made idiichn Table 1 compares the performanceL@aRN-PAIRStO LEARN-

to the score each player receives if the offer is rejectedhéylelib- SUPERVISEDON real data, when using one, two and three types to
erator. We refer to this event as the negotiation alternativeThe learn a selection process. It also includes a naive predasta
score that each player receives if the offer is acceptedégetib- baseline that assumes a uniform probability distributioeraall
erator is referred to as thoposed outcomscore. The outcome of  candidates for each instance. The relative sizes of the etsmb
the game is determined by an offer-response pair, and eagérjs indicate which algorithm performs better.

score in the game depends solely on his or her own performance As shown in the table, while both algorithms performed lrette
Games can differ in the resource players hold and the depepde than the baseline, the performanceL&ARN-PAIRS was consis-



tently better than that afEARN-SUPERVISEDfor both evaluation
metrics. In addition, both algorithms improved in one neetts the
number of types increased.

Algorithm Likelihood | Accuracy
UNIFORM 0.0318 0.0375
Onetype | LEARN-SUPERVISED| 0.0345 0.0562
LEARN-PAIRS 0.0483 0.0812
Two types | LEARN-SUPERVISED| 0.0344 0.0625
LEARN-PAIRS 0.0591 0.0812
Three types| LEARN-SUPERVISED| 0.0341 0.0688
LEARN-PAIRS 0.0609 0.0812

Table 1. Performance comparison on real data

Table 2 evaluates performance of both algorithms on syicthet
data. Here, we ran in an experiment in which a model of 3 types
was used to generate the data and 3 types were used by thadearn
algorithms. We also report the performance of the actualehod
used to generate the data, which constitutes a gold staniféed
ran experiments with many different numbers of types, bothte
actual model and the learning algorithm, with comparabéeilts.
Results show that the likelihood @EARN-PAIRS is much better
than that ofLEARN-SUPERVISED and is close to the performance
represented by the gold standard. Interestingly, bothrigfgos
have the same accuracy as the gold standard. This suggests th
simply predicting the chosen bid is an easier task than iehénérg
the probability of selecting each candidate as the chogkn bi

One possible explanation about this difference in perfoicea
of the algorithms in the CT domain is thaREARN-SUPERVISED
ignores the dependencies between candidate proposatsutnas
that the probability a candidate is accepted depends orilg own
features and not on the features of all the other candidétee-
ality, if the other candidate proposals are exceptionatigdy this
candidate should be less likely to be the chosen bid, ancecsely
if they are bad. By ignoring this factEARN-SUPERVISEDS Miss-
ing crucial information relevant to the selection of the o bid.
Furthermore, the probabilities of acceptance for all cdaidis in
an instance will in general not sum to 1, and a further drakiodic
LEARN-SUPERVISEDS that a different type may be used for the de-
cision for each candidate. In contrastARN-SUPERVISEDModels
the dependencies between candidates, and assumes theypame t
makes the decision for each instance.

Algorithm Likelihood | Accuracy
UNIFORM 0.0320 0.0374
LEARN-SUPERVISED 0.0346 0.2212
LEARN-PAIRS 0.0603 0.2212
ACTUAL MODEL 0.0620 0.2212

Table 2: Performance comparison on synthetic data

5. INFERRING THE PROPERTIES OF A
CHOSEN BID

In this section we consider the problem of inferring the prop
erties of a proposal from the fact that it was the chosen big. W

more likely. The task is to obtain the posterior distribot@ver the
properties of a target proposal, given that it is the chosén b
As a baseline, we propose a simple importance sampling mietho

to achieve this task. Let the target candidatecheWe begin by
sampling from the prior distribution for each candidateluning

the target, to obtain features for the target and; for each of
the other candidates;. We also sample the type used to make
the decision from the probability distributiaR(7). We compute
the score for each candidaté = 3, w] ;... We then compute

the probabilityp = 267% that the target candidate was cho-
m e J

=1
sen. We then weight']the sample consisting of the featuielsy
the probabilityp. We thus obtain a set of weighted samples that is
an approximation to the posterior distribution over feasuof the
target candidate. This set of samples can be used to obtpét-ex
tations of the features we are interested in.

This method, which we callMPORTANCE-SAMPLE, requires
sampling all the candidate proposals. We can do better bynmak
the observation that the probability that a candidate isctiwsen
bid depend most heavily on its own score. Once the type has bee
fixed, and the score of the target candidate has been detsimie
can attempt to estimate the probability that the targetésctiosen
bid without sampling the other candidates. This approachtia
advantage that because only one candidate proposals mebds t
sampled, many more samples can be taken for the same running
time. On the other hand, because this approach uses an testima
of the probability that the target candidate is the winrether than
sampling, itis biased. The degree of the bias depends ontiityq
of the estimates.

There are several ways to estimate the probability thataiget
proposal is the chosen bid, given its features. We wish imag

et (x1)

P(c1 wins = Fx,,..x
(Cl |X17T) 25enny m[eu'r(xl) +Z;n:2 eur(xj)

)

where Ex, ... x.. [ f] denotes the expectation ¢fwith respect to
X2, ..., Xm. This probability is hard to estimate directly without
samplingxa, ..., x, many times for eaclk;, which is precisely
what we wish to avoid. However, we can hope to approximate it,
either with a method that does not samgplg. . . , x,,, at all, or with

a method that only samples,, . . ., x,, a fixed number of times,
and amortizes that sampling over all samples of Our first ap-
proximation comes from the consideration that in the caseravh
c1 is unlikely to be the winner*” 1) will usually be small com-
(cgl) WinS\xgl),T)

(c§2> WinS\xg2> ,T)

the probability the target candidate wins for two differeamples
x$Y andx!?will usually be approximately equal to

pared toy """, e* *3). Therefore the rati i

culxi)

eu(xg

®)

2))

Since the only thing that is required to get good weightedmes
is that the ratios between the weights be correct, we canginsp

5 (R) .
e i) as the weight of théith sample. The scheme that uses
these weights is calledAMPLE-SIMPLE.

However, this is a very crude approximation. In particuthe

assume now that the model is known, and that we have a prior approximation is inaccurate in the cases whéré*?) is large. In

probability distribution over the properties of any caradi pro-
posal. For now, we do not assume that different candidates ha
the same prior. If a given proposal happens to be the chosgn bi
it means that those property values that lead to a highee srer

such cases, the weights will be biased upwards, becauseewne ar
ignoring thee*” 1) term in the denominator of Equation 4 which

is no longer negligible. A better approximation can be oiséi

by not ignoring thee®” 1) term in the denominator. Instead, we



approximate Equation 4 by
et (x1)

e 0N By e [Dory €% 9]

(6)

This scheme, calledAMPLE-EXPECT, Uses a preprocessing step
in which a number of samples of, ...x,, are taken to estimate
By 21, €7 09)] for each typer. The estimate for the
selected type is then substituted in Formula 6 to obtain pipecx-
imate weight for sample; .

Of course, simply moving the expectation inwards is likedy t
produce an inaccurate approximation. In particular, theeetation
of Equation 4 is likely to be dominated by cases wHgj# , e*” )

is small, not by the expected vaIueEI;.”:2 e*” 3) This suggests

a different approximation scheme, where we use small vadfies
>, e* %) In this scheme, calle8AMPLE-MIN, we take a
certain number of samples @b, ..., x in a preprocessing step.
From those samples we take the minimum valu§ g, " )

for each type. We use that value for the selected type insiéad
the expectation in Equation 6 to compute the weight for sampl

featurez, one type, and the scoring function is simply= z. The
prior over the feature is a Gaussian.

Probability thatc; wins
0.001 | 0.01 0.1
Algorithm Samples| Error | Error Error
IMPORTANCE-SAMPLE 100 0.1770| 0.1689| 0.1454
SAMPLE-SIMPLE 1000 | 0.0576| 0.0610| 0.2412
SAMPLE-EXPECT 900 0.0828| 0.0586 | 0.0554
SAMPLE-MIN 900 0.0680| 0.0577| 0.0806

Figure 3: Relative error rates for the different algorithms on
three experiments, varying the probability that ¢; wins

We considered three cases, varying the probability thatahe
get candidate:; will be the winning candidate from 0.001 to 0.1.
Figure 3 shows the results for an experiment in which the rarmb
of samples was chosen to ensure that each algorithm hadrttee sa
running time. We report the relative error of the estimatqubeted
value of the feature of ¢c; compared to an estimate of ground truth

x1. An interesting question in this scheme is how many samples obtained by taking 1,000,000 samples and keeping the onesswh
of x», ...x,, t0 take in the preprocessing step. Even if we had in- ¢; wins. The results are averaged over 10,000 runs. Also shewn i

finite time, taking more samples would not necessarily bealgo
thing, because the minimum may become too small, yieldirgs |
accurate approximation.

the number of samples used by each algorithm.
We see that in the first case, where there is a very low prababil
of ¢1 winning, algorithmsAmMPLE-SIMPLEIS a very good approxi-

Thus far, we have assumed there is a particular target pabpos mation and has the best performance. On the other hand, tinitthe

whose features we want to infer. But another kind of infeeenc
problem is to infer the features of a generic proposal, giterfact
that it was chosen. For example, the runners in a race mighida

case where the probability is quite highhMPLE-SIMPLE performs
very poorly indeed. These results are as one would expezpke
the approximation of Equation 5 assumes that the score dathe

three runners whom we know by name and who have a reputation, get candidate is very small relative to the scores of theratae-

as well as fifteen other anonymous, generic runners. Suppmse
that we want to infer the posterior probability distributiover the

didates. Meanwhile, algorithmsaMPLE-EXPECTand SAMPLE-
MIN, which do not make this assumption, significantly outperfor

properties of an anonymous candidate. One approach would beimPORTANCE-SAMPLEin all three casessAMPLE-MIN is slightly

simply to choose one of the anonymous candidates to be @attar
candidate, and proceed using one of the methods descrilest.ea
But this would be unnecessarily wasteful — it would ignore th
probability that one of the other anonymous candidates ase
as the winner. In the extreme case, all the candidates hawathe
prior distribution over features. In that case the proligbthat
one of the anonymous candidates is selected is 1, and eveplesa
should have a weight of 1.

A better approach, assuming there is a reasonable number of

anonymous candidates, is to use a rejection sampling mettnach
we callSAMPLE-GENERIC. We sample a type fror?(7), and fea-
tures for each of the candidates, as in the baseinm®RTANCE-

SAMPLE method. We then select a winning candidate using the

model. If the winner is an anonymous candidate with the prier
are interested in, we keep its features as a sample. If natejeet
the sample.

Itis worth examining the advantage of this approach morssdjo
The advantage ovemPORTANCE-SAMPLEIS indeed what we have

better for low probabilities o€, winning andSAMPLE-EXPECTIS
better for high probabilities.

Algorithm Signed Error| Absolute Error|
IMPORTANCE-SAMPLE -0.0069 0.0232
SAMPLE-SIMPLE 0.0242 0.0277
SAMPLE-EXPECT 0.0257 0.0259
SAMPLE-MIN 0.0239 0.0239
SAMPLE-GENERIC -0.0062 0.0212

Figure 4: Signed and absolute errors for the five algorithms a
the Colored Trails model

Finally, we compare the algorithms, and aStMPLE-GENERIC,
on a richer model learned from the Colored Trails data. Eaeh i
stance now consisted of the candidate proposals for a Gbloadls
game. Because all proposals have the same prior, we caausa.E-
GENERIChere. Note that now the candidates are correlated with

stated, that each sample can be expected to have a much highegach other — if a game has one high-scoring proposal it ityltice

weight. The advantage of this approach over the estimatezhses
SAMPLE-SIMPLE, SAMPLE-EXPECTand SAMPLE-MIN is not that
the samples taken have higher weight, since with those shem
more samples could be taken, enough so that their total wisigh
equal to that oBEAMPLE-GENERIC. Rather, it comes from the fact
thatSAMPLE-GENERICdoes not use a biased approximation of the
probability that the target candidate wins.

5.1 Experimental Results

We first tested the algorithms for inferring the propertiésao
winning candidate using synthetic data, where there is onky

have more. This fact will hurt the algorithms that only saenl,
because they will not discover the correlations betweedidates.
The results are shown in Figure 4. The figure shows both the ave
age signed errors, and the average absolute errors, oftihreats
of the individual utility feature of the winning proposahkien over
100 runs.SAMPLE-GENERICIs the best performer. Examining the
signed errors, we see that they are very high and positivalfor
three algorithms that only sampte. These three algorithms are
consistently overestimating, and are suffering from ananovbias
which causes them to underperform the other two algorithras e
though they use many more samples.



6. CONCLUSION AND FUTURE WORK

We presented a model used to predict selection processgs, an
two learning algorithms for learning the parameters of ac@n

(6]

process from data. We showed that a model which reasons about

dependencies between candidates is superior to one tt&nhdbe
We also presented several methods for inferring the priggseof

a candidate from the fact that it won, and showed that algoist
that only sample the target candidate perform much betéar &m

algorithm that samples all candidates.

In other domains, it is possible for zero or more than one can-
didates to be chosen but the choice of one candidate doesahave
bearing on whether other candidates are chosen. For exarople
sider hiring a candidate to fill a faculty position. If the sgaturns
up more than one outstanding candidate, more than one oitfer w
be made. If the committee feels that there are no good caedida
no offer will be made. But in general the candidates are ingmm
tition with each other, and if an offer is made to one candidaat
reduces the probability that one will be made to another iciael
In future, we intend to model these types of processes.

Selection processes can naturally be accommodated in-proba
bilistic models. There is a close relationship betweenctiele pro-
cesses and probabilistic relational models (PRMs) [9]. RRaM,
an objectX may be related to another objectvia a complex at-
tribute. We may have uncertainty as to which other obj}édhe
objectX is related to. This is known as reference uncertainty. In a
PRM, this uncertainty has been traditionally modeled by gpiag
an explicit probability distribution over the possible ebsY . The
distribution over possible objects traditionally does depend on
the attributes of the possible objects. However, it is redtior make
the choice of possible objett a selection process, which depends
on the attributes of the possible objects. For example, wehaae
aJobobject. This object will have a complex attribu@andidate
which is a multi-valued attribute. Thiobwill be related to a num-
ber of Personobjects via theCandidateattribute. In addition, the
Jobobject will have arOccupantattribute, which is single-valued.
We have reference uncertainty with regards to the valueeo®ttx
cupantattribute. ModelingOccupantas a selection process, will
make the candidates the values of @endidateattribute, and the
winner depends on the features of the candidates.
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