
Improving Agent Performance in an
Alternating Offers Negotiation Game

A Thesis presented

by

Konstantin Pozin

to

Computer Science

in partial fulfillment of the honors requirements

for the degree of

Bachelor of Arts

Harvard College

Cambridge, Massachusetts

April 1, 2010

Contents

1 Introduction 4

2 Background 6

2.1 Colored Trails . 6

2.2 The Alternating Offers Domain . 7

2.3 Related Work . 10

3 Agent Design 12

3.1 Baseline Design . 12

3.2 A Learning Agent . 15

3.2.1 Myopic Reliability Model . 15

3.2.2 Deception at the End of the Game 17

3.2.3 Game Tree Search . 17

3.2.4 Calculating Probabilities with Predictors 21

4 Methodology 25

4.1 Peer-Designed Agents . 25

4.2 Generating and Testing Classifiers . 25

4.3 Testing Agent Performance . 26

5 Results and Evaluation 27

5.1 Transfer Strategy Based on Myopic Reliability 27

5.2 Myopic Reliability with End-of-Game Deception 28

5.3 Tree Search and Predictors . 28

1

5.3.1 Predictor Quality . 28

5.3.2 Proposal Strategy Based on Game Tree Search 30

5.4 Summary of Results . 30

6 Conclusion 32

Bibliography 34

2

Acknowledgements

I would like to thank Dr. Kobi Gal for his guidance and support throughout the project,

and Professor Stuart Shieber for his insights and advice. I am also very grateful to Yael

Blumberg for providing training data, to Bart Kamphorst and Dimitrios Antos for their

technical guidance in working with Colored Trails, and to Skye Isard and Swapna Reddy

for their help in administering early experiments.

3

Chapter 1

Introduction

One area of artificial intelligence research that has enjoyed some attention in recent years

is the use of computer agents as proxies or representatives for humans in interactions and

transactions. Examples include auction bots that follow a human’s directives in order to

bid and make purchases in online auctions, or agents that might automate certain stock

trades. Such agents interact in open systems — arenas in which agents represent, or are

designed by, different entities. Those who design agents for such scenarios cannot control

the behavior of opponents, and cannot know in advance how these opponents might act.

We refer to computer agents that are created by individuals to follow a particular strat-

egy as peer-designed agents (PDAs). When we create agents to compete against PDAs in

a particular domain, we face certain problems. A PDA may have been intended by its

human designer to act as the designer himself would expect to act in similar scenarios.

However, we cannot make this assumption. There has not been research indicating that

techniques for modeling the social behaviors and personalities of humans have not been

shown to be generalizable to modeling the behaviors and “personalities” of human-designed

robots. Moreover, it has been shown that people can be ineffective at accurately describing

their own strategies in competitive scenarios, and tend to behave differently from the agents

they design (Chalamish et al., 2008).

The goal of our work is to design a learning computer agent that can compete against

PDAs in a particular domain of interaction: the “Alternating Offers” scenario implemented

using a research framework called Colored Trails (described in Sect. 2.1). More specifically,

4

we aim to create an agent that can compete successfully while treating every opponent as a

“black box” — an agent whose behavior pattern and utility function are not initially known

and cannot necessarily be modeled. In this paper we incrementally develop and test several

behavior components for an agent:

1. A simple method for modeling the short-term reliability of another player

2. A simple deception strategy that improves the agent’s performance against many

PDAs

3. An Expectimax algorithm for generating and searching a partial game tree in order

to make game play decisions

4. Statistical classifiers for modeling opponent behavior within the game tree

5

Chapter 2

Background

2.1 Colored Trails

Colored Trails (hereafter abbreviated as CT) is a framework for research in decision-making,

designed by Barbara Grosz and Sarit Kraus (Grosz et al., 2004). It enables researchers to

easily set up board games that can be used to model simple real-world tasks involving

resources and limited interactions.

CT scenarios are played on an n × m board of colored squares. In a typical game,

one square is marked as the “goal square.” Two or more players are represented on the

board with distinct icons, and are given the task of reaching the goal. In order to move

to an adjacent square, a player must expend a resource called a “chip,” the color of which

corresponds to the square onto which he is moving. Depending on the game scenario,

players may begin with different allocations of chips, and may be expected to exchange

some chips with their opponents in order to complete a task. The experimenter is able to

specify the rules of the interaction, the scoring function, the end conditions, and what game

information is visible to each player. Scoring is usually based on whether a player reached

the goal or how far he was from the goal at the end of the game, and on the number of

chips remaining in his possession.

From a technical perspective, CT is implemented as a set of Java applications. A CT

server hosts the games, to which client applications (either agents or GUIs for human users)

connect using Java Messaging Service (JMS). The experimenter then launches a controller,

6

which tells the server to start a game or set of games. The server dynamically loads a

configuration class, which is a Java class customized by the experimenter that provides the

rules and specifications for the scenario.

2.2 The Alternating Offers Domain

The Alternating Offers domain for CT (hereafter “AltOffers”) was designed by researchers at

Harvard and MIT, based on a game-theoretic scenario originally created by Ariel Rubinstein.

In the AltOffers domain, two players are placed on the board and attempt to reach a single

goal. The interaction consists of a series of rounds in which the players may negotiate offers

to exchange chips, carry out exchanges, and move their icons on the board. AltOffers is a

game of complete information; each player always knows where his opponent is located and

what chips the opponent possesses.

From a game-theoretic perspective, AltOffers presents an interesting challenge through

its exchange mechanism. Exchange agreements are not binding — a player is free to promise

to send his opponent some set of chips, and then to renege on his promise by a sending

only a subset of the agreed-upon chips. (A player is also free to send chips that he did not

promise, or to send chips even if no agreement was reached.) Therefore, a player must take

into account not only the exchange values that is decided upon, but also how reliable or

generous the opponent will be, and how reliably the player himself should behave. Because

interactions take place over several rounds, AltOffers is not a one-shot game; players must

be wary of their reputations, and reason about how their opponents will retaliate or reward

them for their actions.

AltOffers is played on a 7 × 5 board. At Round 0, the two players start out in the lower

corners of the board: Player 0, on the left, begins at position (6, 0), while Player 1 begins

at (6, 4). The goal icon is fixed in the top center at (0, 2).

A player is considered task-independent (TI) if he possesses all of the chips necessary to

reach the goal; a player who lacks some of the needed chips is called task-dependent (TD)

because he is dependent on the other player for the chips he needs to reach the goal. We

use two general conditions for the initial allotment of chips in a game:

7

Red Green Gray Yellow
Player 0 5 10 0 9
Player 1 1 13 10 0

Figure 2.1: DD board (Player 0 on the left, Player 1 on the right)

Dependent-dependent (DD). At the beginning of the game, each player is dependent

on the other. In Figure 2.1, Player 0 lacks three gray chips, while Player 1 lacks three yellow

chips. Each would be able to provide the other with the missing chips in an exchange.

Dependent-independent (DI or ID). At the beginning of the game, one player is

dependent on the other. In the DI scenario in Figure 2.2, Player 0 on the left lacks three

gray chips he needs to reach the goal, while Player 1 on the right has all the chips he needs

and would be able to supply Player 0 with the needed chips in an exchange. In an ID

scenario, the board and chip allocations are mirrored. In the DD as well as the DI/ID

scenarios, both players possess a number of extra chips that they do not require to reach

the goal; a dependent player is able to use these extra chips to bargain for chips of the color

that he actually needs.

Every game consists of a variable number of rounds. A round consists of the following

sequence of phases:

1. Communication Phase. The players exchange proposals. One player is initially the

proposer (on Round 0, the proposer is always Player 0, who is on the left player). He

can make an offer to send some subset of the chips he possesses in exchange for some

subset of the responder ’s chips. The responder can accept or reject. If he rejects, he

becomes the proposer and can make a counter-offer. There is a maximum of two such

8

Red Green Gray
Player 0 5 10 0
Player 1 1 13 10

Figure 2.2: DI board (Player 0 on the left, Player 1 on the right)

proposals in a Communication Phase.

2. Chip Exchange Phase. Each player is able to transfer any subset of his available

chips to the other player. In other words, any agreement made in the preceding

Communication Phase is non-binding. Neither player is aware how many chips the

other sent until the phase is over, so a player cannot wait and see what his opponent

sends before making his own decision.

3. Movement Phase. Each player can move a single square if he has the available

chips, expending, for example, one red chip if he moves to a red square.

In games with at least one human player, Round 0 begins with an extra Strategy Preparation

phase in which human players have some time to plan a path to the goal. Computer players

do not do anything during this phase.

The game can end under two possible conditions:

• Both players acquire enough chips to reach the goal. In this case, the system auto-

matically advances each player to the goal (expending the appropriate chips) and the

game ends.

• At least one of the two players remains dormant (does not move) for three consecutive

rounds. In this case, the system moves each player towards the goal in a way that

9

would maximize his score to match his BestUse score (see below) for the round, and

the game ends.

The scoring function for each player is as follows:

• 100 points for reaching the goal

• 5 points for each chip that the player possesses at the end of the game

• −10 points for each square in the path from the player’s final position to the goal

A player’s BestUse score is calculated as follows. For a player i, given a current position

X and a current chipset C, we find BestUse(X, C) by iterating over every possible path

(sequence of moves) the player can take from X, and maximizing the resulting score.

2.3 Related Work

A number of papers have described work involving evaluation of and competition against

peer-designed agents. Several studies have demonstrated the potential incongruity between

people’s intended agent strategies and the actual behavior and performance of the agents

they design. In a study by Manisterski et al. (2008), a group of graduate students attempted

to progressively improve the strategy of agents that they had designed for a trading game.

Instead, it was found that the modified agents performed worse with each revision. Chala-

mish et al. (2008) had a large group of computer science undergraduates play one of four

different games numerous times in order to achieve some proficiency, and then asked them

to design agents that would follow their own strategies; it was found that these agents’

actual behavior were dramatically dissimilar to what was intended by their designers.

Several related papers have used Colored Trails scenarios in their work. A paper by

Talman et al. (2005) presented research very similar to our paper. They designed agents to

compete in a negotiation game almost identical to AltOffers, in which two agents negotiate

chip exchanges in order to obtain the chips necessary to reach the goal, and are able to

renege on agreements. The primary difference in their scenario was that players did not not

know which chips their opponents actually possessed.

10

Instead of attempting to model opponents’ utility functions as in some other studies,

Talman et al. programmed their agents to categorize opponents into different personalities

using two variables (cooperation and reliability) at three levels (low, medium, and high),

based on the opponents’ behavior. All tested agents were further categorized as helpful or

unhelpful. The researchers’ agents could be either single-personality (having a fixed per-

sonality for all games) or multiple-personality (adopting different personalities depending

on the current opponent). The various classes of agents were tested against each other and

against a set of PDAs created by graduate students. The researchers found that helpful

agents tended to fare better when they were dependent and to cooperate with their op-

ponents, but were exploited when they were independent. It was found that in general,

multiple-personality agents outperformed all other agents.

Carr et al. (2009) propose a method for reducing game tree branching factors in CT

games by simplifying exchange proposals into meta-proposals. Rather than considering the

individual counts for every chip color sent by both players, the researchers group all chip

counts into four equivalence classes depending on who needs them to reach the goal: (1)

chips needed by both players, (2) chips needed by the agent but not the opponent, (3)

chips needed by the opponent but not the agent, and (4) extra chips not needed by either

player. Every proposal is then represented by a single 4-tuple. Carr et al. ran a tournament

of 525 matches amongst 21 PDAs, and used several features including the meta-proposals

in order to train four behavior predictors: (a) whether a proposal would be accepted, (b)

whether a player would renege on an agreement, (c) whether a player would make a proposal,

and (d) what the proposal would be. The researchers designed algorithms that would use

these predictors to narrow the search tree, but were unsuccessful in implementing working

versions.

11

Chapter 3

Agent Design

3.1 Baseline Design

The baseline agent whose performance we aim to improve was designed by Sarit Kraus of

Bar-Ilan University. It is called a Personality Rule-Based (PERB) agent, and is intended

to have a medium level of reliability in terms of how well it keeps its side of agreements.

The following is a summary of its behavior (Kraus, 2009).

Personality Categorization

The agent categorizes its opponents into low, medium, and high cooperation and reliability,

as in Talman et al. (2005).

Utility Function for Exchanges

The agent’s utility function for an exchange, U , is based on an estimation of the agreement’s

benefit to the agent (Uagent) as well as to the opponent (Uother). For a given player i, Ui is

function based on player i’s expected score if the promised exchange takes place (including

an approximate probability of eventually reaching the goal), and on a simple model of the

other player’s “opinion” of player i after the exchange.

The value of U is (a · Uagent + b · Uother), where a and b are constants and a : b is

determined by the two players’ dependency statuses (who is task-dependent and who is

task-independent), as well as which player is making the offer.

12

Generating an Offer

The agent makes an offer by

1. generating a set of possible offers S

2. evaluating each offer with the utility function U , where the highest utility over S is

Umax.

3. keeping a subset offers R ⊆ S, for each of which U ≥ Umax − ε (where ε is a constant)

4. choosing a random offer from R

The initial offers that are included in S depend on the players’ respective dependency

statuses and on their personalities. In general, if both players are task-dependent, most

possible offers will be 1:1. If one player is “stronger” than the other, meaning that he needs

fewer chips to reach the goal (or is already task-independent), then most offers will be made

at a ratio of 2:1 in favor of the stronger player. For example, if the agent is dependent and

the opponent is independent, the agent will offer to send twice as many chips as it would

receive.

Responding to an Offer

The following description of the PERB agent’s algorithm for responding to an offer is

adapted directly from Sarit Kraus’s specification:

1. If the offer requires the agent to send a chip it needs in order to reach the goal, it

rejects the offer.

2. When responding to a counter-offer (the second offer in one Communication Phase):

if the agent must move to avoid ending the game, and the offer will enable it to move,

the agent accepts.

3. When responding to a counter-offer: if the agent is TI, and the other player needs a

chip to move to avoid ending the game, then the agent will compare the utilities of

(a) accepting the offer and (b) sending just the required chip to the other player. If

the utility of the offer is higher, the agent accepts.

13

4. If the opponent is TI and the agent is TD, and the offer (a) has a chip ratio of at most

1 : 2 for chipsSentByOpponent : chipsSentByAgent, and (b) provides the agent

with required chips, then the agent accepts.

5. Otherwise, the agent computes the utility of

• the proposed agreement (Ua)

• doing nothing (Un)

• the offer that the agent itself would have offered in this setting (Uo)

Then:

(a) If Un > Ia, the agent rejects.

(b) If there have been no earlier agreements in the game (and the agent therefore

has no information on the opponent’s reliability), and the agreement would shift

the opponent from TD to TI, then the agent rejects.

(c) If Ua + ε >U o, then the agent accepts.

(d) Otherwise, the agent rejects.

Sending Chips After an Agreement

1. On the first agreement, the agent always sends all promised chips.

2. If the opponent has Low reliability, the agent sends no chips.

3. If the opponent has High reliability, the agent sends all chips.

4. If the opponent has Medium reliability, the agent follows a rather complicated set of

rules that can be read in the PERB agent specification (Kraus, 2009). In general, the

agent (a) tries to make sure to send a chip if not sending it would cause the game

to end, and (b) sends either all or “part” of the chips with some probability that is

determined by the opponent’s reliability level.

5. If the agent is TI, the opponent needs a chip to move, and sending this chip would

not make the opponent TI, the agent sends the chip.

14

Moving

If the agent is task-independent, it will advance one step on each movement phase. If the

agent is task-dependent, it will move only when not moving would cause the game to end

(if the agent has already been dormant for two rounds).

3.2 A Learning Agent

The PERB agent described above suffers from a number of design flaws. Its behavior is

determined by a large set of ad hoc rules that are not based on any clear game-theoretic

principle. Although it does does create and update a basic model of its opponent (through

measures of cooperativeness and reliability), this model’s features are only used to choose

arbitrary parameters for the PERB agent’s actions. No reasoning about the opponent’s

expected behavior takes place. Moreover, proposals are generated and considered based on

ratios of unweighted chip counts, rather than ratios of utility values.

Our goal is to design and implement an agent that addresses some of these issues. We

intend to create an agent that will:

• model its opponents using continuous distributions, rather than divisions into levels

• use a game tree to determine at least part of the agent’s behavior, using the opponent

model to reason about expected utilities

In this paper, we incrementally replace parts of the PERB agent’s behavior with our own,

as described below. As a first step, we decided to replace the PERB agent’s chip sending

behavior with an algorithm based on our myopic reliability model.

3.2.1 Myopic Reliability Model

We present a simple reliability model that can be used as a starting point for creating a

learning agent:

Let the agent be Player 0 and the opponent Player 1. At the beginning of a round

r, Player i’s position is given by Posi(r) and his chipset is given by Chipsi(r). Then

15

let the two players’ initial BestUse scores for Round 0 be respectively defined as B0(r) =

BestUse (Pos0 (r) , Chips0 (r)) and B1(r) = BestUse (Pos1 (r) , Chips1 (r)).

Let the final accepted offers be PromisedToSend0(r) and PromisedToSend1(r), rep-

resenting the chipsets that the respective players agree to send at the end of the Commu-

nication Phase for round r.

Let the chips that each player actually sent by given by ActuallySent0(r) and

ActuallySent1(r). Then we define the reliability of Player 1 for round r as follows:

Reliab1(r) =

BestUse(P os0(r), Chips0(r)+ActuallySent1(r))−B0(r)
BestUse(P os0(r), Chips0(r)+P romisedT oSend1(r))−B0(r)

DefaultReliability if the fraction is 0
0 , implying no agreement

1 if just the denominator is 0

In other words, a player’s reliability for a given round is the ratio of the actual im-

provement in his BestUse score to the promised improvement, based on the chips sent by

his opponent and the chips promised by his opponent, respectively. When the opponent

sends all the chips it promised on a given round, his reliability for that round will be 1.

Understandably, if he sends fewer chips than promised, his reliability will be between 0 and

1, and if he sends more chips, the reliability will be greater than 1.

Sending Strategy Based on Myopic Reliability Model

In the current version of our agent, we use the reliability model described above to calculate

the chips that the agent should send to its opponent during the exchange phase. Assume that

the agent is Player 0. The agent’s promised chipset during round r, PromisedToSend0(r),

is determined by the proposal strategy described in Section 3.1. We use the reliability model

to calculate the subset of the promised chips that would bring the agent’s behavior as close

as possible to “tit-for-tat” — in other words, we attempt to make the agent as reliable on

the current round as its opponent was on the previous round. In practice, considering only

the previous round is overly myopic. For this reason, we take into account the last two

rounds when possible, using the weight w for Round (r − 1) and 1 − w for Round (r − 2).

Let TargetReliab0(r + 1) = w · Reliab1(r − 1) + (1 − w) · Reliab1(r − 2). We define each

16

player’s reliability for the zeroth round, Reliabi(0), to be some constant DefaultReliability.

Let the chipset X = ActuallySent0(r + 1) ⊆ PromisedToSend0(r + 1). Then our goal

is to choose an X such that

X = arg min
X∗

|TargetReliab0(r + 1) − Reliab0(r + 1)|

More specifically, the chipset X is calculated as follows:

X = arg min
X∗

∣∣∣T argetReliab0(r+1) − BestUse(P os1(r+1), Chips1(r+1)+X∗)−B1(r+1)
BestUse(P osr(r+1), Chips1(r+1)+P romisedT oSend0(r+1)−B1(r+1))

∣∣∣

3.2.2 Deception at the End of the Game

In preliminary trials using the above sending strategy (see Section 5.1), we found that

AltOffersLearning fared poorly in most games because of its high level of “trust.” As long

as the opponent PDA keeps all its promises early in the game, the reliability model above

dictates that AltOffersLearning itself should keep its promise on subsequent turns. However,

the PDAs often take advantage of this naive trust by reneging on promises as soon they

become task-independent. To counter this deception, we introduced a deceptive behavior

into AltOffersLearning’s sending strategy: the agent never completes a transfer that would

make the opponent task-independent (if the opponent is not already independent). This

provides a further advantage against those PDAs that naively keep negotiating and sending

the agent additional chips in hope of becoming task-independent, even when the agent’s

behavior history would imply that it is too unreliable.

Algorithm 3.1 Never make the opponent independent
repeat

chipsToSend ← removeRandomChips(chipsToSend, 2)
until receiving chipsToSend would not make opponent independent

3.2.3 Game Tree Search

We developed a partial game tree search to replace or augment some of the rule-based

behavior in the baseline agent. A simple Expectimax algorithm is used for the tree search,

which is initiated when it is the agent’s turn to make an offer to the opponent. The tree is

17

Offer

Response Response

Offer1 Offer2

…

Transfer

Transfer Transfer Transfer

None Some All

None Some All

Accept Reject

Decision Node (Agent)

Prob. Node (Opponent)

Leaf Node

MAKEGAMETREEONMYOFFER()

MAKEGAMETREEONOPPRESPONSE()

MAKEGAMETREEONMYTRANSFER()

MAKEGAMETREEONOPPTRANSFER()

Figure 3.1: Game tree from agent’s offer generation

only generated when the agent needs to make an offer, and is limited in depth to a single

round of the game. Figure 3.1 shows the structure of the tree, consisting of nodes linked by

action edges.

Nodes

Every node has a game state reflecting the positions and chips of the two players, as well

as the last offer made, if any. Each node also has some calculated utility with respect to

the agent; this value is directly related to the final BestUse score that an agent might earn

as a consequence of the game state. There are three types of nodes:

Decision nodes (squares in the diagram) are points at which the agent chooses an

action by picking the child node that has the best utility. The utility of a decision node

18

is equal to the utility of its best child. This is the max part of Expectimax; the search

algorithm tries to maximize the utility at decision nodes.

Probability nodes (circles in the diagram) are points at which the opponent chooses

an action. Because the opponent’s action is uncertain, we generate a list of possible actions

with a corresponding set of probabilities. The utility of a probability node is equal to the

average utility of its children, weighted using the probability of each child. This is the

expecti part of Expectimax; the algorithm calculates the expected utility at probability

nodes.

Leaf nodes (triangles in the diagram) are points at which we stop searching the tree

further — either because the game ends at that point, or, as in our case, because we are

limiting the size of the game tree by stopping at this point. The utility of a leaf node is the

BestUse score for the agent, given the game state contained in the leaf node.

Actions

There are three types of actions used in our tree search.

Offer actions describe a proposal for an exchange, and consist of the two respective

chipsets to be sent by the proposer and the responder.

Response actions describe whether a proposal is accepted or rejected.

Transfer actions describe a transfer of chips from one player to another. As can be

seen in Figure 3.1, we split the exchange phase into two actions for the purposes of the

Expectimax algorithm, even though the transfers actually take place simultaneously. In the

tree search, the agent first chooses a chipset to transfer, and then we make a guess about

the chipset that the opponent transfers. This does not mean, however, that the opponent

has any knowledge of the agent’s transfer in advance.

The Search Algorithm

When the agent has to make an offer during the Communication Phase, the method make-

GameTreeOnMyOffer is called. This generates a copy of the current game state and

then places the state data into a new root node. The method then retrieves a set of

potential offers generated by PERB’s rules (see Section 3.1). For each possible offer, a new

19

node is created as a ProbabilityNode and added to the root’s list of child nodes, linked by

a corresponding TransferAction edge.

Algorithm 3.2
1: procedure makeGameTreeOnMyOffer
2: root ← new TreeNode(current game state)
3: S ← generateOffers " use the PERB rules to generate offers
4: for all s ∈ S do
5: action ← new OfferAction(offer) " make a new edge representing the offer
6: child ← new ProbabilityNode(root state with offer s)
7: makeGameTreeOnOppResponse(child)
8: root.addChild(action, child)
9: end for

10: return node.chooseBestChild()
11: end procedure

Before completing makeGameTreeOnMyOffer, we recurse down and call make-

GameTreeOnOppResponse on each child node. This method generates new actions and

nodes in which the offer has either been accepted or rejected, assigns probabilities to both

actions, and adds them as children of the ProbabilityNodes. In this paper, we are not

considering cases where the opponent rejects the agent’s offer and makes a counter-offer, so

a reject action links to a LeafNode. For the accept action, we create a new DecisionNode,

on which we call makeGameTreeOnMyTransfer.

Algorithm 3.3
1: procedure makeGameTreeOnOppResponse(ProbabilityNode node)
2: rejectAction ← new ResponseAction(REJECT)
3: rejectNode ← new LeafNode(REJECT)
4: acceptAction ← new ResponseAction(ACCEPT)
5: acceptNode ← new DecisionNode(ACCEPT)
6: makeGameTreeOnMyTransfer(acceptNode)
7: P ← getProbabilities({acceptAction, rejectAction})
8: node.addChild(acceptAction, acceptNode, P [acceptAction])
9: node.addChild(rejectAction, rejectNode, P [rejectAction])

10: end procedure

Using the offer information that has been passed down through the tree, makeGame-

TreeOnMyTransfer generates a set of TransferActions and ProbabilityNodes represent-

ing the possible transfers that the agent can make, where the game state in each new node

reflects the subtraction of chips from the agent and the addition of those chips to the op-

20

ponent. To avoid generating branches for the entire powerset of the promised chipset, we

only generate three possible transfers, representing none, some, or all of the promised chips.

The some transfer is chosen by taking a random subset of the promised chips. For each of

these child nodes, we call makeGameTreeOnOppTransfer.

Algorithm 3.4
1: procedure makeGameTreeOnMyTransfer(DecisionNode node)
2: allChips ← chips for agent to send from node.lastOffer.chipSet
3: noChips ← new ChipSet()
4: someChips ← random subset of allChips
5: transferAll ← new TransferAction(allChips)
6: transferNone ← new TransferAction(noChips)
7: transferSome ← new TransferAction(someChips)
8: for all action ∈ {transferAll, transferNone, transferSome} do
9: child ← new ProbabilityNode based on node state, with the transfer action

applied
10: node.addChild(action, child)
11: makeGameTreeOnOppTransfer(child)
12: end for
13: node.chooseBestChild()
14: end procedure

makeGameTreeOnOppTransfer creates another set of possible transfers of none,

some, or all of the opponent’s promised chips. The some transfer is again determined by

choosing a random subset of the promised chips. We assign probabilities to each of these

transfers, create the appropriate TransferActions and new nodes, and add them as child

nodes. At this point, all the child nodes are LeafNodes; the game tree is thus confined to a

single round of the game.

Once the entire game tree has been recursively generated, the top-level method, make-

GameTreeOnMyOffer, initiates the search. The root node’s instance method chooseBestChild

is called; this chooses the child node with the best Expectimax utility by recursively calling

getUtility and/or chooseBestChild from all deeper nodes in the tree.

3.2.4 Calculating Probabilities with Predictors

The game tree search requires a means of calculating probabilities at the ProbabilityNodes

in the tree, specifically to determine (a) whether the opponent will accept the agent’s

proposal, and (b) how well the opponent will keep its promise to transfer chips. This can

21

Algorithm 3.5
procedure makeGameTreeOnOppTransfer(ProbabilityNode node)

allChips ← chips for opponent to send from node.lastOffer.chipSet
noChips ← new ChipSet()
someChips ← random subset of allChips
transferAll ← new TransferAction(allChips)
transferNone ← new TransferAction(noChips)
transferSome ← new TransferAction(someChips)
P ← getProbabilities({transferAll, transferNone, transferSome})
for all action ∈ {transferAll, transferNone, transferSome} do

child ← new LeafNode based on node state, with the transfer action applied
node.addChild(action, child, P [action])
makeGameTreeOnOppTransfer(child)

end for
end procedure

be accomplished through the use of a statistical classifier.

A classifier is first trained on a set of training instances. An instance is a single data

point consisting of multiple features. Features can be numeric, where the values are all real

numbers in some arbitrary range, or nominal, where every value is chosen from a finite,

discrete list of possible values. In our case, each instance represents information about a

single proposal made by a player. Numeric features may include players’ reliability and

current and potential scores based on that proposal. Nominal features include whether the

proposal was accepted (true or false), and transfer classes (whether a player transferred

none, some, or all of the chips he promised). For an instance I with a given set of features

(i1, i2, . . . , in), a classifier can be trained, for example, to use features (i1, i2, . . . , in−1) to

make guesses about feature in (the output). Training the classifier results in the creation

of a model — an algorithm with a set of parameters that can be used to classify new,

previously unseen instances.

If the output feature is nominal, the model should return a discrete probability distri-

bution for the sample space (list of possible values). Often, the “correct” value is assumed

to be the one with the highest probability; in our case, however, we are interested not in the

most likely value, but in the entire probability distribution, which we will use within the

Expectimax algorithm to calculate expected utility at ProbabilityNodes. Table 3.1 shows

the two predictors that we integrated into our tree search. OpponentResponsePredictor

22

OpponentResponsePredictor OpponentTransferPredictor
Features prevPlayerReliability

prevOpponentReliability
playerCurrentBestUseScore
playerPromisedBenefit
opponentCurrentBestUseScore
opponentPromisedBenefit
prevPlayerTransferClass
prevOpponentTransferClass

prevPlayerReliability
prevOpponentReliability
playerCurrentBestUseScore
playerPromisedBenefit
opponentCurrentBestUseScore
opponentPromisedBenefit
prevPlayerTransferClass
prevOpponentTransferClass

Output opponentResponse
{accept, reject}

opponentTransferClass
{none, some, all}

Table 3.1: List of features in the two predictors.

predicts whether the opponent will accept an offer and is used in makeGameTreeOn-

OppResponse; OpponentTransferPredictor predicts the opponent’s transfer class and is

used in makeGameTreeOnOppTransfer.

The following is an explanation of the features:

• prevPlayerReliability, prevOpponentReliability — This is each player’s myopic relia-

bility value from the last accepted offer (and corresponding transfer). If there are no

accepted offers before the current one, then this value is missing.

• playerCurrentBestUseScore, opponentCurrentBestUseScore — This is each player’s

current best-use score for each player, using the chips possessed at the beginning of

the current round.

• playerPromisedBenefit, opponentPromisedBenefit — This is the difference between

CurrentBestUseScore and PromisedBestScore (the latter not included as a feature).

In other words, this is the number of points that the player has been promised he

would be “given” by his opponent.

• prevPlayerTransferClass, prevOpponentTransfer — This value summarizes whether

each player transferred none, some, or all of the chips he promised on the last accepted

offer. This value is directly calculated from reliability values using the table below.

If there is no earlier accepted offer, then these attribute values are missing.

23

Reliability r = 0 0 < r < 1 r ≥ 1

TransferClass none some all

• opponentResponse — This describes whether the opponent accepts or rejects the cur-

rent offer.

• opponentTransferClass — If the current offer is an accepted offer, this describes

whether the opponent will transfer none, some, or all of the promised chips.

Weka

Rather than implement classifiers from scratch, we used Weka, a free, open-source Java-

based application for data mining and machine learning (Hall et al., 2009). Weka includes

a large set of classifiers that can be trained and tested using a graphical interface, the com-

mand line, or integration into a Java application. After testing several available classifiers

on our training data for proposals, we chose to use Weka’s J48 classifier, which had one

of the highest degrees of accuracy for this dataset (see Section 5.3.1). J48 is an implemen-

tation of the C4.5 algorithm for generating decision trees; the algorithm is described by

Quinlan (1993). For each predictor, we used the Weka GUI to train the classifier offline

and to export a serialized model. We then created wrapper functions around Weka’s Java

library to integrate the classifier into the agent’s code by loading the model dynamically at

runtime, creating new instances from the current game state, and classifying them during

the game tree search.

24

Chapter 4

Methodology

4.1 Peer-Designed Agents

We had available to us a set of 19 PDAs for AltOffers that were created by undergraduate

computer science students at Bar-Ilan University in 2009. Each of these PDAs was placed

into the Java source tree for our project and compiled together with rest of our Colored

Trails codebase. This ensured that all agents would use the same core CT codebase, thus

avoiding class version problems that would otherwise have arisen in JMS communications.

4.2 Generating and Testing Classifiers

We used a set of structured logs from a tournament that was run among the 19 PDAs by

Yael Blumberg at Bar-Ilan University. For the DD board, we had logs of offers and transfers

for a total of 337 games. Using a Python script, we extracted values for the features listed in

Table 3.1 into CSV files that we could import directly into Weka. In order to use all possible

training instances, each offer was used to create two training instances for the classifier —

one from the perspective of the proposer, and one from the perspective of the responder.

For the OpponentResponsePredictor, we had a total of 3976 training instances. For the

OpponentTransferPredictor, we were limited to accepted offers, since a transferred chipset

can only be classified in relation to the promised chipset; we had 1860 instances for this

predictor.

25

We used the Weka GUI to load the training sets and generate our classifiers. We then

tested the classifiers directly in Weka using its built-in cross-validation mechanism, with 10

folds.

4.3 Testing Agent Performance

To test the various versions of our agent (called AltOffersLearning), we compared its per-

formance to the baseline performance of Kraus’s agent (PERB). Incorporating some utility

code for launching Windows processes (written by Yael Ejgenberg), we created a partially

automated tournament system for Colored Trails. This system loads tournament settings

from two external text files:

• an agent definition file that lists identifiers for the various CT agents we wish to run,

and the the Java runtime arguments needed to execute them

• a tournament definition file, which includes the CT runtime commands needed to start

the server and to start the controller, followed by a list of agent pairs that should play

against each other in the tournament

A tournament is run by providing the file names of the two definition files to a particular

Java executable; this executable starts the CT server, starts the agents, and then starts a

controller specially programmed for the tournament system. A single server then runs all

the games in the tournament simultaneously (about 10-20 games per tournament can be

run on a relatively recent PC).

We evaluated the performance of AltOffersLearning and the various configurations of

PERB by having them play against the set of 19 PDAs described above.

Due to an undetermined defect in our agent code that emerged when running multiple

instances of the agent simultaneously on the the imbalanced boards (ID and DI), we were

unable to gather valid data for those two boards. Therefore, all of our experimental data is

based on the DD board.

26

Chapter 5

Results and Evaluation

5.1 Transfer Strategy Based on Myopic Reliability

Our first test compares the performance of PERB against a version of AltOffersLearning

which differs from PERB only in that it uses a sending strategy based on the myopic

reliability model (Section 3.2.1). Table 5.1 shows, for each of the two agents, average scores

for two tournaments of 19 games against the PDAs. (The other tables below are also based

on two tournaments of 19 games.) Wins, ties, and losses reflect the number of times that

the agent’s score was greater than, equal to, or less than the score of the competing PDA.

PERB does poorly compared to the set of PDAs, losing by an average of 25.4 points.

Our agent’s absolute performance is slightly worse than, but still very similar to, that

of PERB. (In fact, PERB’s average score in one of the two tournaments is identical to

AltOffersLearning’s average score in a tournament). However, the opponent PDAs’ average

score is higher for AltOffersLearning, suggesting that transferring based on our myopic

reliability model alone causes AltOffersLearning to be more generous than necessary.

Agent’s avg PDAs’ avg Wins Ties Losses
PERB 99.2 124.6 2 11 6
Learning - Reliability 96.7 135.7 3.5 9.5 6

Table 5.1: PERB vs. AltOffersLearning with Myopic Reliability

27

Agent’s avg PDAs’ avg Wins Ties Losses
PERB - Deception 124.5 41.8 10 7 2
Learning - Reliability & Deception 112.0 41.6 10.5 6.5 2

Table 5.2: PERB with Deception vs. AltOffersLearning with Myopic Reliability and De-
ception

5.2 Myopic Reliability with End-of-Game Deception

Based on these preliminary results, we decided to introduce end-of-game deception, overrid-

ing AltOffersLearning’s sending strategy in cases where the reliability model strategy would

cause it to make the opponent task-independent (see Section 3.2.2). As shown in the bottom

row of Table 5.2, this resulted in a noticeable improvement in the agent’s performance, and

a drastic falloff in the scores of the PDA opponents.

For the sake of completeness, we also ported the deception strategy to PERB in order

to enable a more direct comparison. The addition of a deceptive sending behavior had a

much more pronounced effect on performance in PERB than in our agent; PERB had an

average increase of 25.3 points, compared to AltOffersLearning’s 16.3. This has several

implications. First, PERB is much more generous and reliable than necessary; PERB’s per-

formance can clearly be improved by reneging on agreements that would make the opponent

independent. Second, although PERB’s performance is not very good to begin with, our

myopic reliability model is particularly sub-optimal in comparison; it severely dampens the

improvement that can be achieved by introducing deception. A myopic tit-for-tat sending

strategy is clearly not an effective one, at least against the set of PDAs that we have been

testing.

5.3 Tree Search and Predictors

5.3.1 Predictor Quality

Weka includes a collection of several dozen classifiers, with a variety of classification meth-

ods and memory/time/accuracy trade-offs. For our two classification tasks, we found

the C4.5 classifier (called “J48” in the Weka collection), to be the most accurate. Ac-

curacy is measured based on the percentage of correctly classified instances; “correct” clas-

28

Predicted
accept reject

Actual accept 1405 729
reject 697 1145

Table 5.3: Confusion matrix for OpponentResponsePredictor (C4.5)

Predicted
none some all

none 759 38 279
Actual some 16 38 14

all 84 60 572

Table 5.4: Confusion matrix for OpponentTransferPredictor (C4.5)

sification, in turn, occurs when the distribution’s highest probability value corresponds

to the correct class. For example, if we have an opponent transfer instance with a re-

sult of some, and the OpponentResponsePredictor returns a probability distribution of

(P (none), P (some), P (all)) = (0.15, 0.6, 0.25), then the predictor’s classification is correct

because P (some) = 0.6 is the largest value in the distribution.

For the OpponentResponsePredictor, C4.5 yielded an accuracy of 72.16% in 10-fold

cross-validation. (By comparison, a Bayes net classifier had an accuracy of only 64.13%).

Table 5.3 shows the confusion matrix for OpponentResponsePredictor.

For the OpponentTransferPredictor, C4.5 was even more impressive, with an accuracy

of 81.45% (compared to 73.60% for Bayes net). Table 5.4 shows the confusion matrix for

OpponentResponsePredictor.

In both cases, the classifiers performed significantly better than chance, indicating that

the PDAs’ behavior was to a large degree predictable. Our classifiers’ accuracy might be

further improved by incorporating additional attributes from the game state; it is almost

certain that the behavior of many PDAs relies on additional parameters (such as number

of dormant turns, distance to goal, cumulative reliability, etc.) that we did not implement

in this version of the predictors.

29

Agent’s avg PDAs’ avg Wins Ties Losses
PERB - Deception 124.5 41.8 10 7 2
Learning - Reliability & Deception 112.0 41.6 10.5 6.5 2
Learning - Reliability, Deception, Tree 105.1 42.1 11 7 1

Table 5.5: AltOffersLearning with Myopic Reliability, Deception, and Tree Search

5.3.2 Proposal Strategy Based on Game Tree Search

As detailed in Sections 3.2.3 and 3.2.4, we incorporated the above predictors into the ex-

pecti part of an Expectimax game tree search, and used the search algorithm to choose

chipsets to offer to the opponent. The bottom row of Table 5.5 shows the effect of adding

this offer strategy to our agent’s behavior. When we replace the offer selection strategy

from PERB with one based on our implementation of Expectimax, AltOffersLearning un-

fortunately suffers a further loss in performance.

5.4 Summary of Results

Figure 5.1 shows a comparison of average scores for the two versions of PERB and the

three versions of AltOffersLearning that we tested. Note that in order to show correct

proportions, the lower bound is at −80, which is the minimum possible score on the DD

board.

30

99.2

124.5

96.7

112.0
105.1

124.6

41.8

135.7

41.6 42.1

‐80

‐60

‐40

‐20

0

20

40

60

80

100

120

140

160

Agent

PDAs

Figure 5.1: Summary of average scores for agent versions

31

Chapter 6

Conclusion

As shown in Figure 5.1, we actually achieve a small net improvement over the performance

of the baseline PERB agent. However, this improvement is entirely attributable to a single

modification — the addition of guaranteed deception to the agent’s transfer behavior. The

more theoretically interesting modifications — the reliability model and the game tree search

— actually caused declines in agent performance.

This does not, however, imply that these components cannot be useful in an agent

implementation. Our reliability model is a very reasonable way of expressing an agent’s

reliability for any single round, since it considers ratios of changes in utility (as measured

by score), rather than simply ratios of changes in chip counts. However, as our results

show, the use of the reliability model as the sole determining factor for chip transfers is

not effective; choosing transfers reactively, in a “tit-for-tat” manner, is inadequate, as this

involves no reasoning about the future.

From the results in Section 5.3.1, as well as from the results of Carr et al., we find that

statistical classifiers can be surprisingly effective in predicting certain aspects of opponents’

behavior. It is likely possible to improve accuracy further by including additional attributes

from the game state. In order for predictors to become more useful in an agent strategy,

their role and number should be expanded.

The ineffectiveness of our Expectimax search most likely stemmed from its very limited

scope. Although it is necessary to constrain tree depth in a scenario with as large a branching

factor as AltOffers, our restriction of the search to a single entry point (makeGameTree-

32

OnMyOffer) and a single game round meant that Expectimax’s utility calculations were

based on very uneducated guesses. At a minimum, the tree search should be expanded to

include rounds where the opponent is the first proposer or rejects the player’s proposal and

makes a counter-offer, and should recurse down to one or two subsequent rounds. At cutoff

points, it may be fruitful to try to create and use new predictors to estimate utility values,

rather than simply using the default best-use scores at those leaf nodes.

33

Bibliography

R. Carr, P. Roos, and B. Wilson. Opponent modeling in Colored Trails: Meta-proposals

and behavior predictors in a feasible game tree search. Unpublished., 2009.

M. Chalamish, D. Sarne, and S. Kraus. Programming agents as a means of capturing

self-strategy. AAMAS ’08: Proceedings of the 7th International Joint Conference on

Autonomous Agents and Multiagent Systems, pages 1161–1168, 2008.

B. J. Grosz, S. Kraus, S. Talman, B. Stossel, and M. Havlin. The influence of social

dependencies on decision-making: Initial investigations with a new game. AAMAS ’04:

Proceedings of the Third International Joint Conference on Autonomous Agents and Mul-

tiagent Systems, pages 782–789, 2004.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA

data mining software: an update. SIGKDD Explorations, 11(1):10–18, 2009.

S. Kraus. General specification for agent that is medium reliability and medium coopera-

tiveness. Email correspondence, September 2009.

E. Manisterski, R. Lin, and S. Kraus. Understanding how people design trading agents over

time. AAMAS ’08: Proceedings of the 7th International Joint Conference on Autonomous

Agents and Multiagent Systems, pages 1593–1596, 2008.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

S. Talman, M. Hadad, Y. Gal, and S. Kraus. Adapting to agents’ personalities in negotiation.

AAMAS ’05: Proceedings of the Fourth International Joint Conference on Autonomous

Agents and Multiagent Systems, pages 383–389, 2005.

34

	Introduction
	Background
	Colored Trails
	The Alternating Offers Domain
	Related Work

	Agent Design
	Baseline Design
	A Learning Agent
	Myopic Reliability Model
	Deception at the End of the Game
	Game Tree Search
	Calculating Probabilities with Predictors

	Methodology
	Peer-Designed Agents
	Generating and Testing Classifiers
	Testing Agent Performance

	Results and Evaluation
	Transfer Strategy Based on Myopic Reliability
	Myopic Reliability with End-of-Game Deception
	Tree Search and Predictors
	Predictor Quality
	Proposal Strategy Based on Game Tree Search

	Summary of Results

	Conclusion
	Bibliography

