Improving Agent Performance in an

Alternating Offers Negotiation Game

A Thesis presented
by
Konstantin Pozin
to
Computer Science
in partial fulfillment of the honors requirements
for the degree of
Bachelor of Arts
Harvard College

Cambridge, Massachusetts

April 1, 2010

Contents

1 Introduction

2 Background
2.1 Colored Trails oL
2.2 The Alternating Offers Domain
2.3 Related Work

3 Agent Design
3.1 Baseline Design
3.2 A Learning Agent
3.2.1 Mpyopic Reliability Model
3.2.2 Deception at the End of the Game
3.2.3 Game Tree Search

3.2.4 Calculating Probabilities with Predictors

4 Methodology
4.1 Peer-Designed Agents oo
4.2 Generating and Testing Classifiers

4.3 Testing Agent Performance

5 Results and Evaluation
5.1 Transfer Strategy Based on Myopic Reliability
5.2 Myopic Reliability with End-of-Game Deception

5.3 Tree Search and Predictors o

10

12
12
15
15
17
17
21

25
25
25
26

5.3.1 Predictor Quality L 28

5.3.2 Proposal Strategy Based on Game Tree Search 30

5.4 Summary of Results 30

6 Conclusion 32
Bibliography 34

Acknowledgements

I would like to thank Dr. Kobi Gal for his guidance and support throughout the project,
and Professor Stuart Shieber for his insights and advice. I am also very grateful to Yael
Blumberg for providing training data, to Bart Kamphorst and Dimitrios Antos for their
technical guidance in working with Colored Trails, and to Skye Isard and Swapna Reddy

for their help in administering early experiments.

Chapter 1

Introduction

One area of artificial intelligence research that has enjoyed some attention in recent years
is the use of computer agents as proxies or representatives for humans in interactions and
transactions. Examples include auction bots that follow a human’s directives in order to
bid and make purchases in online auctions, or agents that might automate certain stock
trades. Such agents interact in open systems — arenas in which agents represent, or are
designed by, different entities. Those who design agents for such scenarios cannot control
the behavior of opponents, and cannot know in advance how these opponents might act.

We refer to computer agents that are created by individuals to follow a particular strat-
egy as peer-designed agents (PDAs). When we create agents to compete against PDAs in
a particular domain, we face certain problems. A PDA may have been intended by its
human designer to act as the designer himself would expect to act in similar scenarios.
However, we cannot make this assumption. There has not been research indicating that
techniques for modeling the social behaviors and personalities of humans have not been
shown to be generalizable to modeling the behaviors and “personalities” of human-designed
robots. Moreover, it has been shown that people can be ineffective at accurately describing
their own strategies in competitive scenarios, and tend to behave differently from the agents
they design (Chalamish et al., 2008).

The goal of our work is to design a learning computer agent that can compete against
PDAs in a particular domain of interaction: the “Alternating Offers” scenario implemented

using a research framework called Colored Trails (described in Sect. 2.1). More specifically,

we aim to create an agent that can compete successfully while treating every opponent as a
“black box” — an agent whose behavior pattern and utility function are not initially known
and cannot necessarily be modeled. In this paper we incrementally develop and test several

behavior components for an agent:
1. A simple method for modeling the short-term reliability of another player

2. A simple deception strategy that improves the agent’s performance against many

PDAs

3. An Expectimax algorithm for generating and searching a partial game tree in order

to make game play decisions

4. Statistical classifiers for modeling opponent behavior within the game tree

Chapter 2

Background

2.1 Colored Trails

Colored Trails (hereafter abbreviated as CT) is a framework for research in decision-making,
designed by Barbara Grosz and Sarit Kraus (Grosz et al., 2004). It enables researchers to
easily set up board games that can be used to model simple real-world tasks involving
resources and limited interactions.

CT scenarios are played on an n x m board of colored squares. In a typical game,
one square is marked as the “goal square” Two or more players are represented on the
board with distinct icons, and are given the task of reaching the goal. In order to move
to an adjacent square, a player must expend a resource called a “chip,” the color of which
corresponds to the square onto which he is moving. Depending on the game scenario,
players may begin with different allocations of chips, and may be expected to exchange
some chips with their opponents in order to complete a task. The experimenter is able to
specify the rules of the interaction, the scoring function, the end conditions, and what game
information is visible to each player. Scoring is usually based on whether a player reached
the goal or how far he was from the goal at the end of the game, and on the number of
chips remaining in his possession.

From a technical perspective, CT is implemented as a set of Java applications. A CT
server hosts the games, to which client applications (either agents or GUIs for human users)

connect using Java Messaging Service (JMS). The experimenter then launches a controller,

which tells the server to start a game or set of games. The server dynamically loads a
configuration class, which is a Java class customized by the experimenter that provides the

rules and specifications for the scenario.

2.2 The Alternating Offers Domain

The Alternating Offers domain for CT (hereafter “AltOffers”) was designed by researchers at
Harvard and MIT, based on a game-theoretic scenario originally created by Ariel Rubinstein.
In the AltOffers domain, two players are placed on the board and attempt to reach a single
goal. The interaction consists of a series of rounds in which the players may negotiate offers
to exchange chips, carry out exchanges, and move their icons on the board. AltOffers is a
game of complete information; each player always knows where his opponent is located and
what chips the opponent possesses.

From a game-theoretic perspective, AltOffers presents an interesting challenge through
its exchange mechanism. Exchange agreements are not binding — a player is free to promise
to send his opponent some set of chips, and then to renege on his promise by a sending
only a subset of the agreed-upon chips. (A player is also free to send chips that he did not
promise, or to send chips even if no agreement was reached.) Therefore, a player must take
into account not only the exchange values that is decided upon, but also how reliable or
generous the opponent will be, and how reliably the player himself should behave. Because
interactions take place over several rounds, AltOffers is not a one-shot game; players must
be wary of their reputations, and reason about how their opponents will retaliate or reward
them for their actions.

AltOffers is played on a 7 x 5 board. At Round 0, the two players start out in the lower
corners of the board: Player 0, on the left, begins at position (6,0), while Player 1 begins
at (6,4). The goal icon is fixed in the top center at (0, 2).

A player is considered task-independent (TT) if he possesses all of the chips necessary to
reach the goal; a player who lacks some of the needed chips is called task-dependent (TD)
because he is dependent on the other player for the chips he needs to reach the goal. We

use two general conditions for the initial allotment of chips in a game:

[u]

Red | Green | Gray | Yellow
Player 0 5 10 0 9
Player 1 1 13 10 0

Figure 2.1: DD board (Player 0 on the left, Player 1 on the right)

Dependent-dependent (DD). At the beginning of the game, each player is dependent
on the other. In Figure 2.1, Player 0 lacks three gray chips, while Player 1 lacks three yellow
chips. Each would be able to provide the other with the missing chips in an exchange.

Dependent-independent (DI or ID). At the beginning of the game, one player is
dependent on the other. In the DI scenario in Figure 2.2, Player 0 on the left lacks three
gray chips he needs to reach the goal, while Player 1 on the right has all the chips he needs
and would be able to supply Player 0 with the needed chips in an exchange. In an ID
scenario, the board and chip allocations are mirrored. In the DD as well as the DI/ID
scenarios, both players possess a number of extra chips that they do not require to reach
the goal; a dependent player is able to use these extra chips to bargain for chips of the color
that he actually needs.

Every game consists of a variable number of rounds. A round consists of the following

sequence of phases:

1. Communication Phase. The players exchange proposals. One player is initially the
proposer (on Round 0, the proposer is always Player 0, who is on the left player). He
can make an offer to send some subset of the chips he possesses in exchange for some
subset of the responder’s chips. The responder can accept or reject. If he rejects, he

becomes the proposer and can make a counter-offer. There is a maximum of two such

(=]

Red | Green | Gray
Player 0 5 10 0
Player 1 1 13 10

Figure 2.2: DI board (Player 0 on the left, Player 1 on the right)

proposals in a Communication Phase.

2. Chip Exchange Phase. Each player is able to transfer any subset of his available
chips to the other player. In other words, any agreement made in the preceding
Communication Phase is non-binding. Neither player is aware how many chips the
other sent until the phase is over, so a player cannot wait and see what his opponent

sends before making his own decision.

3. Movement Phase. Each player can move a single square if he has the available

chips, expending, for example, one red chip if he moves to a red square.

In games with at least one human player, Round 0 begins with an extra Strategy Preparation
phase in which human players have some time to plan a path to the goal. Computer players
do not do anything during this phase.

The game can end under two possible conditions:

e Both players acquire enough chips to reach the goal. In this case, the system auto-
matically advances each player to the goal (expending the appropriate chips) and the

game ends.

e At least one of the two players remains dormant (does not move) for three consecutive

rounds. In this case, the system moves each player towards the goal in a way that

would maximize his score to match his BestUse score (see below) for the round, and

the game ends.
The scoring function for each player is as follows:
e 100 points for reaching the goal
e 5 points for each chip that the player possesses at the end of the game
e —10 points for each square in the path from the player’s final position to the goal

A player’s BestUse score is calculated as follows. For a player i, given a current position
X and a current chipset C, we find BestUse(X,C) by iterating over every possible path

(sequence of moves) the player can take from X, and maximizing the resulting score.

2.3 Related Work

A number of papers have described work involving evaluation of and competition against
peer-designed agents. Several studies have demonstrated the potential incongruity between
people’s intended agent strategies and the actual behavior and performance of the agents
they design. In a study by Manisterski et al. (2008), a group of graduate students attempted
to progressively improve the strategy of agents that they had designed for a trading game.
Instead, it was found that the modified agents performed worse with each revision. Chala-
mish et al. (2008) had a large group of computer science undergraduates play one of four
different games numerous times in order to achieve some proficiency, and then asked them
to design agents that would follow their own strategies; it was found that these agents’
actual behavior were dramatically dissimilar to what was intended by their designers.
Several related papers have used Colored Trails scenarios in their work. A paper by
Talman et al. (2005) presented research very similar to our paper. They designed agents to
compete in a negotiation game almost identical to AltOffers, in which two agents negotiate
chip exchanges in order to obtain the chips necessary to reach the goal, and are able to
renege on agreements. The primary difference in their scenario was that players did not not

know which chips their opponents actually possessed.

10

Instead of attempting to model opponents’ utility functions as in some other studies,
Talman et al. programmed their agents to categorize opponents into different personalities
using two variables (cooperation and reliability) at three levels (low, medium, and high),
based on the opponents’ behavior. All tested agents were further categorized as helpful or
unhelpful. The researchers’ agents could be either single-personality (having a fixed per-
sonality for all games) or multiple-personality (adopting different personalities depending
on the current opponent). The various classes of agents were tested against each other and
against a set of PDAs created by graduate students. The researchers found that helpful
agents tended to fare better when they were dependent and to cooperate with their op-
ponents, but were exploited when they were independent. It was found that in general,
multiple-personality agents outperformed all other agents.

Carr et al. (2009) propose a method for reducing game tree branching factors in CT
games by simplifying exchange proposals into meta-proposals. Rather than considering the
individual counts for every chip color sent by both players, the researchers group all chip
counts into four equivalence classes depending on who needs them to reach the goal: (1)
chips needed by both players, (2) chips needed by the agent but not the opponent, (3)
chips needed by the opponent but not the agent, and (4) extra chips not needed by either
player. Every proposal is then represented by a single 4-tuple. Carr et al. ran a tournament
of 525 matches amongst 21 PDAs, and used several features including the meta-proposals
in order to train four behavior predictors: (a) whether a proposal would be accepted, (b)
whether a player would renege on an agreement, (c) whether a player would make a proposal,
and (d) what the proposal would be. The researchers designed algorithms that would use
these predictors to narrow the search tree, but were unsuccessful in implementing working

versions.

11

Chapter 3

Agent Design

3.1 Baseline Design

The baseline agent whose performance we aim to improve was designed by Sarit Kraus of
Bar-Tlan University. It is called a Personality Rule-Based (PERB) agent, and is intended
to have a medium level of reliability in terms of how well it keeps its side of agreements.

The following is a summary of its behavior (Kraus, 2009).

Personality Categorization

The agent categorizes its opponents into low, medium, and high cooperation and reliability,

as in Talman et al. (2005).

Utility Function for Exchanges

The agent’s utility function for an exchange, U, is based on an estimation of the agreement’s
benefit to the agent (Usgent) as well as to the opponent (Uytper). For a given player i, U; is
function based on player i’s expected score if the promised exchange takes place (including
an approximate probability of eventually reaching the goal), and on a simple model of the
other player’s “opinion” of player i after the exchange.

The value of U is (a- Uggent + - Uother), where a and b are constants and a : b is
determined by the two players’ dependency statuses (who is task-dependent and who is

task-independent), as well as which player is making the offer.

12

Generating an Offer
The agent makes an offer by

1. generating a set of possible offers S

2. evaluating each offer with the utility function U, where the highest utility over S is
Umaa;‘-

3. keeping a subset offers R C S, for each of which U > U,,q, — € (where € is a constant)

4. choosing a random offer from R

The initial offers that are included in S depend on the players’ respective dependency
statuses and on their personalities. In general, if both players are task-dependent, most
possible offers will be 1:1. If one player is “stronger” than the other, meaning that he needs
fewer chips to reach the goal (or is already task-independent), then most offers will be made
at a ratio of 2:1 in favor of the stronger player. For example, if the agent is dependent and
the opponent is independent, the agent will offer to send twice as many chips as it would

receive.

Responding to an Offer

The following description of the PERB agent’s algorithm for responding to an offer is

adapted directly from Sarit Kraus’s specification:

1. If the offer requires the agent to send a chip it needs in order to reach the goal, it

rejects the offer.

2. When responding to a counter-offer (the second offer in one Communication Phase):
if the agent must move to avoid ending the game, and the offer will enable it to move,

the agent accepts.

3. When responding to a counter-offer: if the agent is TI, and the other player needs a
chip to move to avoid ending the game, then the agent will compare the utilities of
(a) accepting the offer and (b) sending just the required chip to the other player. If

the utility of the offer is higher, the agent accepts.

13

4. If the opponent is TI and the agent is TD, and the offer (a) has a chip ratio of at most
1 : 2 for chipsSentByOpponent : chipsSentByAgent, and (b) provides the agent

with required chips, then the agent accepts.

5. Otherwise, the agent computes the utility of

e the proposed agreement (U,)
e doing nothing (U,,)

e the offer that the agent itself would have offered in this setting (U,)

Then:

(a) If U, > I,, the agent rejects.

(b) If there have been no earlier agreements in the game (and the agent therefore
has no information on the opponent’s reliability), and the agreement would shift

the opponent from TD to TI, then the agent rejects.
(c¢) If Uy + € >U ,, then the agent accepts.

(d) Otherwise, the agent rejects.

Sending Chips After an Agreement
1. On the first agreement, the agent always sends all promised chips.
2. If the opponent has Low reliability, the agent sends no chips.
3. If the opponent has High reliability, the agent sends all chips.

4. If the opponent has Medium reliability, the agent follows a rather complicated set of
rules that can be read in the PERB agent specification (Kraus, 2009). In general, the
agent (a) tries to make sure to send a chip if not sending it would cause the game
to end, and (b) sends either all or “part” of the chips with some probability that is

determined by the opponent’s reliability level.

5. If the agent is TI, the opponent needs a chip to move, and sending this chip would

not make the opponent TI, the agent sends the chip.

14

Moving

If the agent is task-independent, it will advance one step on each movement phase. If the
agent is task-dependent, it will move only when not moving would cause the game to end

(if the agent has already been dormant for two rounds).

3.2 A Learning Agent

The PERB agent described above suffers from a number of design flaws. Its behavior is
determined by a large set of ad hoc rules that are not based on any clear game-theoretic
principle. Although it does does create and update a basic model of its opponent (through
measures of cooperativeness and reliability), this model’s features are only used to choose
arbitrary parameters for the PERB agent’s actions. No reasoning about the opponent’s
expected behavior takes place. Moreover, proposals are generated and considered based on
ratios of unweighted chip counts, rather than ratios of utility values.

Our goal is to design and implement an agent that addresses some of these issues. We

intend to create an agent that will:
e model its opponents using continuous distributions, rather than divisions into levels

e use a game tree to determine at least part of the agent’s behavior, using the opponent

model to reason about expected utilities

In this paper, we incrementally replace parts of the PERB agent’s behavior with our own,
as described below. As a first step, we decided to replace the PERB agent’s chip sending

behavior with an algorithm based on our myopic reliability model.

3.2.1 Myopic Reliability Model

We present a simple reliability model that can be used as a starting point for creating a
learning agent:
Let the agent be Player 0 and the opponent Player 1. At the beginning of a round

r, Player i’s position is given by Pos;(r) and his chipset is given by Chips;(r). Then

15

let the two players’ initial BestUse scores for Round 0 be respectively defined as By(r) =
BestUse (Posg (r) ,Chipsg (r)) and By(r) = BestUse (Posy (1), Chipsy (r)).

Let the final accepted offers be PromisedToSendy(r) and PromisedToSend;(r), rep-
resenting the chipsets that the respective players agree to send at the end of the Commu-
nication Phase for round r.

Let the chips that each player actually sent by given by ActuallySenty(r) and

ActuallySent;(r). Then we define the reliability of Player 1 for round r as follows:

BestUse(Posg(r), Chipso(r)+ ActuallySenty(r))—Bo(r)
BestUse(Posq(r), Chipso(r)+PromisedToSendy (r))—Bo(r)

Reliab (r) = DefaultReliability if the fraction is %, implying no agreement

1 if just the denominator is 0

In other words, a player’s reliability for a given round is the ratio of the actual im-
provement in his BestUse score to the promised improvement, based on the chips sent by
his opponent and the chips promised by his opponent, respectively. When the opponent
sends all the chips it promised on a given round, his reliability for that round will be 1.
Understandably, if he sends fewer chips than promised, his reliability will be between 0 and

1, and if he sends more chips, the reliability will be greater than 1.

Sending Strategy Based on Myopic Reliability Model

In the current version of our agent, we use the reliability model described above to calculate
the chips that the agent should send to its opponent during the exchange phase. Assume that
the agent is Player 0. The agent’s promised chipset during round r, PromisedT oSendy(r),
is determined by the proposal strategy described in Section 3.1. We use the reliability model
to calculate the subset of the promised chips that would bring the agent’s behavior as close
as possible to “tit-for-tat” — in other words, we attempt to make the agent as reliable on
the current round as its opponent was on the previous round. In practice, considering only
the previous round is overly myopic. For this reason, we take into account the last two
rounds when possible, using the weight w for Round (r — 1) and 1 — w for Round (r — 2).

Let TargetReliaby(r + 1) = w - Reliabi(r — 1) 4+ (1 —w) - Reliaby (r — 2). We define each

16

player’s reliability for the zeroth round, Reliab;(0), to be some constant De fault Reliability.
Let the chipset X = ActuallySento(r + 1) C PromisedToSendy(r + 1). Then our goal

is to choose an X such that
X = argmin |TargetReliaby(r + 1) — Reliaby(r + 1)|
X*

More specifically, the chipset X is calculated as follows:

_ BestUse(Posi(r+1), Chips1 (r+1)+X*)—Bi(r+1)
BestUse(Posy(r+1), Chips1(r+1)+PromisedToSendo(r+1)—Bi(r+1))

X = arg min |TargetReliabo(r+1)
X*

3.2.2 Deception at the End of the Game

In preliminary trials using the above sending strategy (see Section 5.1), we found that
AltOffersLearning fared poorly in most games because of its high level of “trust.” As long
as the opponent PDA keeps all its promises early in the game, the reliability model above
dictates that AltOffersLearning itself should keep its promise on subsequent turns. However,
the PDAs often take advantage of this naive trust by reneging on promises as soon they
become task-independent. To counter this deception, we introduced a deceptive behavior
into AltOffersLearning’s sending strategy: the agent never completes a transfer that would
make the opponent task-independent (if the opponent is not already independent). This
provides a further advantage against those PDAs that naively keep negotiating and sending
the agent additional chips in hope of becoming task-independent, even when the agent’s

behavior history would imply that it is too unreliable.

Algorithm 3.1 Never make the opponent independent
repeat
chipsToSend < removeRandomChips(chipsToSend, 2)
until receiving chipsToSend would not make opponent independent

3.2.3 Game Tree Search

We developed a partial game tree search to replace or augment some of the rule-based
behavior in the baseline agent. A simple Expectimax algorithm is used for the tree search,

which is initiated when it is the agent’s turn to make an offer to the opponent. The tree is

17

Offer

MAKEGAMETREEONMYOFFER()

MAKEGAMETREEONOPPRESPONSE()

MAKEGAMETREEONMYTRANSFER() Transfer

MAKEGAMETREEONOPPTRANSFER() Decision Node (Agent)
ecision Noae (Agen

Prob. Node (Opponent)

Leaf Node

O
JAN

Figure 3.1: Game tree from agent’s offer generation

only generated when the agent needs to make an offer, and is limited in depth to a single
round of the game. Figure 3.1 shows the structure of the tree, consisting of nodes linked by

action edges.

Nodes

Every node has a game state reflecting the positions and chips of the two players, as well
as the last offer made, if any. FEach node also has some calculated wtility with respect to
the agent; this value is directly related to the final BestUse score that an agent might earn
as a consequence of the game state. There are three types of nodes:

Decision nodes (squares in the diagram) are points at which the agent chooses an

action by picking the child node that has the best utility. The utility of a decision node

18

is equal to the wutility of its best child. This is the MAX part of Expectimax; the search
algorithm tries to maximize the utility at decision nodes.

Probability nodes (circles in the diagram) are points at which the opponent chooses
an action. Because the opponent’s action is uncertain, we generate a list of possible actions
with a corresponding set of probabilities. The utility of a probability node is equal to the
average utility of its children, weighted using the probability of each child. This is the
EXPECTI part of Expectimax; the algorithm calculates the expected utility at probability
nodes.

Leaf nodes (triangles in the diagram) are points at which we stop searching the tree
further — either because the game ends at that point, or, as in our case, because we are
limiting the size of the game tree by stopping at this point. The utility of a leaf node is the

BestUse score for the agent, given the game state contained in the leaf node.

Actions

There are three types of actions used in our tree search.

Offer actions describe a proposal for an exchange, and consist of the two respective
chipsets to be sent by the proposer and the responder.

Response actions describe whether a proposal is accepted or rejected.

Transfer actions describe a transfer of chips from one player to another. As can be
seen in Figure 3.1, we split the exchange phase into two actions for the purposes of the
Expectimax algorithm, even though the transfers actually take place simultaneously. In the
tree search, the agent first chooses a chipset to transfer, and then we make a guess about
the chipset that the opponent transfers. This does not mean, however, that the opponent

has any knowledge of the agent’s transfer in advance.

The Search Algorithm

When the agent has to make an offer during the Communication Phase, the method MAKE-
GAMETREEONMYOFFER is called. This generates a copy of the current game state and
then places the state data into a new root node. The method then retrieves a set of

potential offers generated by PERB’s rules (see Section 3.1). For each possible offer, a new

19

node is created as a ProbabilityNode and added to the root’s list of child nodes, linked by

a corresponding TransferAction edge.

Algorithm 3.2
1: procedure MAKEGAMETREEONMYOFFER
2 root < new TreeNode(current game state)
3 S <~ GENERATEOFFERS > use the PERB rules to generate offers
4 for all s € S do
5: action < new Offer Action(offer) > make a new edge representing the offer
6
7
8
9

child + new ProbabilityNode(root state with offer s)
MAKEGAMETREEONOPPRESPONSE(child)
root.addChild(action, child)
end for
10: return node.chooseBestChild()
11: end procedure

Before completing MAKEGAMETREEONMYOFFER, we recurse down and call MAKE-
GAMETREEONOPPRESPONSE on each child node. This method generates new actions and
nodes in which the offer has either been accepted or rejected, assigns probabilities to both
actions, and adds them as children of the ProbabilityNodes. In this paper, we are not
considering cases where the opponent rejects the agent’s offer and makes a counter-offer, so
a reject action links to a LeafNode. For the accept action, we create a new DecisionNode,

on which we call MAKEGAMETREEONMYTRANSFER.

Algorithm 3.3

1: procedure MAKEGAMETREEONOPPRESPONSE(ProbabilityNode node)

2 rejectAction <— new ResponseAction(REJECT)

3 rejectNode <— new LeafNode(REJECT)

4: accept Action < new ResponseAction(ACCEPT)
5: acceptNode < new DecisionNode(ACCEPT)
6
7
8

MAKEGAMETREEONMYTRANSFER (accept N ode)
P + getProbabilities({accept Action, reject Action})
: node.addChild(accept Action, accept N ode, Placcept Action)])
9: node.addChild(reject Action, reject Node, P[reject Action])
10: end procedure

Using the offer information that has been passed down through the tree, MAKEGAME-
TREEONMYTRANSFER generates a set of Transfer Actions and ProbabilityNodes represent-
ing the possible transfers that the agent can make, where the game state in each new node

reflects the subtraction of chips from the agent and the addition of those chips to the op-

20

ponent. To avoid generating branches for the entire powerset of the promised chipset, we
only generate three possible transfers, representing none, some, or all of the promised chips.
The some transfer is chosen by taking a random subset of the promised chips. For each of

these child nodes, we call MAKEGAMETREEONOPPTRANSFER.

Algorithm 3.4

1: procedure MAKEGAMETREEONMY TRANSFER (DecisionNode node)

2 allChips < chips for agent to send from node.lastOffer.chipSet

3 noChips < new ChipSet()

4 someChips < random subset of allChips
5: transfer All < new Transfer Action(allChips)
6
7
8
9

transferNone <— new TransferAction(noChips)
transferSome < new TransferAction(someChips)
for all action € {transferAll,transfer None,transferSome} do
child < new ProbabilityNode based on node state, with the transfer action
applied

10: node.addChild(action, child)
11: MAKEGAMETREEONOPPTRANSFER (child)
12: end for

13: node.chooseBestChild()
14: end procedure

MAKEGAMETREEONOPPTRANSFER creates another set of possible transfers of none,
some, or all of the opponent’s promised chips. The some transfer is again determined by
choosing a random subset of the promised chips. We assign probabilities to each of these
transfers, create the appropriate TransferActions and new nodes, and add them as child
nodes. At this point, all the child nodes are LeafNodes; the game tree is thus confined to a
single round of the game.

Once the entire game tree has been recursively generated, the top-level method, MAKE-
GAMETREEONMYOQOFFER, initiates the search. The root node’s instance method CHOOSEBESTCHILD
is called; this chooses the child node with the best Expectimax utility by recursively calling

GETUTILITY and/or CHOOSEBESTCHILD from all deeper nodes in the tree.

3.2.4 Calculating Probabilities with Predictors

The game tree search requires a means of calculating probabilities at the ProbabilityNodes
in the tree, specifically to determine (a) whether the opponent will accept the agent’s

proposal, and (b) how well the opponent will keep its promise to transfer chips. This can

21

Algorithm 3.5
procedure MAKEGAMETREEONOPPTRANSFER(ProbabilityNode node)
allChips < chips for opponent to send from node.lastOffer.chipSet
noChips < new ChipSet()
someChips <— random subset of allChips
transferAll < new TransferAction(allChips)
transfer None <— new TransferAction(noChips)
transferSome < new TransferAction(someChips)
P < getProbabilities({trans fer All, transfer None, trans ferSome})
for all action € {transferAll,transfer None,transferSome} do
child <+ new LeafNode based on node state, with the transfer action applied
node.addChild(action, child, P [action])
MAKEGAMETREEONOPPTRANSFER (child)
end for
end procedure

be accomplished through the use of a statistical classifier.

A classifier is first trained on a set of training instances. An instance is a single data
point consisting of multiple features. Features can be numeric, where the values are all real
numbers in some arbitrary range, or nominal, where every value is chosen from a finite,
discrete list of possible values. In our case, each instance represents information about a
single proposal made by a player. Numeric features may include players’ reliability and
current and potential scores based on that proposal. Nominal features include whether the
proposal was accepted (true or false), and transfer classes (whether a player transferred
none, some, or all of the chips he promised). For an instance I with a given set of features
(i1, i2, .., in), a classifier can be trained, for example, to use features (i1, i2, ..., in—1) to
make guesses about feature i,, (the output). Training the classifier results in the creation
of a model — an algorithm with a set of parameters that can be used to classify new,
previously unseen instances.

If the output feature is nominal, the model should return a discrete probability distri-
bution for the sample space (list of possible values). Often, the “correct” value is assumed
to be the one with the highest probability; in our case, however, we are interested not in the
most likely value, but in the entire probability distribution, which we will use within the
Expectimax algorithm to calculate expected utility at ProbabilityNodes. Table 3.1 shows

the two predictors that we integrated into our tree search. OpponentResponsePredictor

22

OpponentResponsePredictor OpponentTransferPredictor

Features | prevPlayerReliability prevPlayerReliability
prevOpponentReliability prevOpponentReliability
playerCurrentBestUseScore playerCurrentBestUseScore
playerPromisedBenefit playerPromised Benefit
opponentCurrentBestUseScore | opponentCurrentBestUseScore
opponentPromised Benefit opponentPromisedBenefit
prevPlayerTransferClass prevPlayerTransferClass
prevOpponentTransferClass prevOpponentTransferClass

Output opponentResponse opponentTransferClass
{accept, reject} {none, some, all}

Table 3.1: List of features in the two predictors.

predicts whether the opponent will accept an offer and is used in MAKEGAMETREEON-

OpPPRESPONSE; OpponentTransferPredictor predicts the opponent’s transfer class and is

used in MAKEGAMETREEONOPPTRANSFER.

The following is an explanation of the features:

prevPlayerReliability, prevOpponentReliability — This is each player’s myopic relia-
bility value from the last accepted offer (and corresponding transfer). If there are no

accepted offers before the current one, then this value is missing.

playerCurrentBestUseScore, opponentCurrentBestUseScore — This is each player’s
current best-use score for each player, using the chips possessed at the beginning of

the current round.

playerPromisedBenefit, opponentPromisedBenefit — This is the difference between
CurrentBestUseScore and PromisedBestScore (the latter not included as a feature).
In other words, this is the number of points that the player has been promised he

would be “given” by his opponent.

prevPlayerTransferClass, prevOpponentTransfer — This value summarizes whether
each player transferred none, some, or all of the chips he promised on the last accepted
offer. This value is directly calculated from reliability values using the table below.

If there is no earlier accepted offer, then these attribute values are missing.

23

Reliability r=0]0<r<l|r>1

TransferClass | none some all

e opponentResponse — This describes whether the opponent accepts or rejects the cur-

rent offer.

e opponentTransferClass — If the current offer is an accepted offer, this describes

whether the opponent will transfer none, some, or all of the promised chips.

Weka

Rather than implement classifiers from scratch, we used Weka, a free, open-source Java-
based application for data mining and machine learning (Hall et al., 2009). Weka includes
a large set of classifiers that can be trained and tested using a graphical interface, the com-
mand line, or integration into a Java application. After testing several available classifiers
on our training data for proposals, we chose to use Weka’s J48 classifier, which had one
of the highest degrees of accuracy for this dataset (see Section 5.3.1). J48 is an implemen-
tation of the C4.5 algorithm for generating decision trees; the algorithm is described by
Quinlan (1993). For each predictor, we used the Weka GUI to train the classifier offline
and to export a serialized model. We then created wrapper functions around Weka’s Java
library to integrate the classifier into the agent’s code by loading the model dynamically at
runtime, creating new instances from the current game state, and classifying them during

the game tree search.

24

Chapter 4

Methodology

4.1 Peer-Designed Agents

We had available to us a set of 19 PDAs for AltOffers that were created by undergraduate
computer science students at Bar-Ilan University in 2009. Each of these PDAs was placed
into the Java source tree for our project and compiled together with rest of our Colored
Trails codebase. This ensured that all agents would use the same core CT codebase, thus

avoiding class version problems that would otherwise have arisen in JMS communications.

4.2 Generating and Testing Classifiers

We used a set of structured logs from a tournament that was run among the 19 PDAs by
Yael Blumberg at Bar-Ilan University. For the DD board, we had logs of offers and transfers
for a total of 337 games. Using a Python script, we extracted values for the features listed in
Table 3.1 into CSV files that we could import directly into Weka. In order to use all possible
training instances, each offer was used to create two training instances for the classifier —
one from the perspective of the proposer, and one from the perspective of the responder.
For the OpponentResponsePredictor, we had a total of 3976 training instances. For the
OpponentTransferPredictor, we were limited to accepted offers, since a transferred chipset
can only be classified in relation to the promised chipset; we had 1860 instances for this

predictor.

25

We used the Weka GUI to load the training sets and generate our classifiers. We then
tested the classifiers directly in Weka using its built-in cross-validation mechanism, with 10

folds.

4.3 Testing Agent Performance

To test the various versions of our agent (called AltOffersLearning), we compared its per-
formance to the baseline performance of Kraus’s agent (PERB). Incorporating some utility
code for launching Windows processes (written by Yael Ejgenberg), we created a partially
automated tournament system for Colored Trails. This system loads tournament settings

from two external text files:

e an agent definition file that lists identifiers for the various CT agents we wish to run,

and the the Java runtime arguments needed to execute them

e a tournament definition file, which includes the CT runtime commands needed to start
the server and to start the controller, followed by a list of agent pairs that should play

against each other in the tournament

A tournament is run by providing the file names of the two definition files to a particular
Java executable; this executable starts the CT server, starts the agents, and then starts a
controller specially programmed for the tournament system. A single server then runs all
the games in the tournament simultaneously (about 10-20 games per tournament can be
run on a relatively recent PC).

We evaluated the performance of AltOffersLearning and the various configurations of
PERB by having them play against the set of 19 PDAs described above.

Due to an undetermined defect in our agent code that emerged when running multiple
instances of the agent simultaneously on the the imbalanced boards (ID and DI), we were
unable to gather valid data for those two boards. Therefore, all of our experimental data is

based on the DD board.

26

Chapter 5

Results and Evaluation

5.1 Transfer Strategy Based on Myopic Reliability

Our first test compares the performance of PERB against a version of AltOffersLearning
which differs from PERB only in that it uses a sending strategy based on the myopic
reliability model (Section 3.2.1). Table 5.1 shows, for each of the two agents, average scores
for two tournaments of 19 games against the PDAs. (The other tables below are also based
on two tournaments of 19 games.) Wins, ties, and losses reflect the number of times that
the agent’s score was greater than, equal to, or less than the score of the competing PDA.

PERB does poorly compared to the set of PDAs, losing by an average of 25.4 points.
Our agent’s absolute performance is slightly worse than, but still very similar to, that
of PERB. (In fact, PERB’s average score in one of the two tournaments is identical to
AltOffersLearning’s average score in a tournament). However, the opponent PDAs’ average
score is higher for AltOffersLearning, suggesting that transferring based on our myopic

reliability model alone causes AltOffersLearning to be more generous than necessary.

Agent’s avg | PDAs’ avg | Wins | Ties | Losses
PERB 99.2 124.6 2 11 6
Learning - Reliability 96.7 135.7 3.5 9.5 6

Table 5.1: PERB vs. AltOffersLearning with Myopic Reliability

27

Agent’s avg | PDAs’ avg | Wins | Ties | Losses
PERB - Deception 124.5 41.8 10 7 2
Learning - Reliability & Deception 112.0 41.6 10.5 | 6.5 2

Table 5.2: PERB with Deception vs. AltOffersLearning with Myopic Reliability and De-
ception

5.2 Myopic Reliability with End-of-Game Deception

Based on these preliminary results, we decided to introduce end-of-game deception, overrid-
ing AltOffersLearning’s sending strategy in cases where the reliability model strategy would
cause it to make the opponent task-independent (see Section 3.2.2). As shown in the bottom
row of Table 5.2, this resulted in a noticeable improvement in the agent’s performance, and
a drastic falloff in the scores of the PDA opponents.

For the sake of completeness, we also ported the deception strategy to PERB in order
to enable a more direct comparison. The addition of a deceptive sending behavior had a
much more pronounced effect on performance in PERB than in our agent; PERB had an
average increase of 25.3 points, compared to AltOffersLearning’s 16.3. This has several
implications. First, PERB is much more generous and reliable than necessary; PERB’s per-
formance can clearly be improved by reneging on agreements that would make the opponent
independent. Second, although PERB’s performance is not very good to begin with, our
myopic reliability model is particularly sub-optimal in comparison; it severely dampens the
improvement that can be achieved by introducing deception. A myopic tit-for-tat sending
strategy is clearly not an effective one, at least against the set of PDAs that we have been

testing.

5.3 Tree Search and Predictors

5.3.1 Predictor Quality

Weka includes a collection of several dozen classifiers, with a variety of classification meth-
ods and memory/time/accuracy trade-offs. For our two classification tasks, we found
the C4.5 classifier (called “J48” in the Weka collection), to be the most accurate. Ac-

curacy is measured based on the percentage of correctly classified instances; “correct” clas-

28

Predicted
accept | reject
Actual | accept | 1405 729
reject 697 1145

Table 5.3: Confusion matrix for OpponentResponsePredictor (C4.5)

Predicted
none | some | all
none | 759 38 279
Actual | some 16 38 14
all 84 60 572

Table 5.4: Confusion matrix for OpponentTransferPredictor (C4.5)

sification, in turn, occurs when the distribution’s highest probability value corresponds
to the correct class. For example, if we have an opponent transfer instance with a re-
sult of some, and the OpponentResponsePredictor returns a probability distribution of
(P(none), P(some), P(all)) = (0.15, 0.6, 0.25), then the predictor’s classification is correct
because P(some) = 0.6 is the largest value in the distribution.

For the OpponentResponsePredictor, C4.5 yielded an accuracy of 72.16% in 10-fold
cross-validation. (By comparison, a Bayes net classifier had an accuracy of only 64.13%).
Table 5.3 shows the confusion matrix for OpponentResponsePredictor.

For the OpponentTransferPredictor, C4.5 was even more impressive, with an accuracy
of 81.45% (compared to 73.60% for Bayes net). Table 5.4 shows the confusion matrix for
OpponentResponsePredictor.

In both cases, the classifiers performed significantly better than chance, indicating that
the PDAs’ behavior was to a large degree predictable. Our classifiers’ accuracy might be
further improved by incorporating additional attributes from the game state; it is almost
certain that the behavior of many PDAs relies on additional parameters (such as number
of dormant turns, distance to goal, cumulative reliability, etc.) that we did not implement

in this version of the predictors.

29

Agent’s avg | PDAs” avg | Wins | Ties | Losses
PERB - Deception 124.5 41.8 10 7 2
Learning - Reliability & Deception 112.0 41.6 10.5 6.5 2
Learning - Reliability, Deception, Tree 105.1 42.1 11 7 1

Table 5.5: AltOffersLearning with Myopic Reliability, Deception, and Tree Search

5.3.2 Proposal Strategy Based on Game Tree Search

As detailed in Sections 3.2.3 and 3.2.4, we incorporated the above predictors into the EX-
PECTI part of an Expectimax game tree search, and used the search algorithm to choose
chipsets to offer to the opponent. The bottom row of Table 5.5 shows the effect of adding
this offer strategy to our agent’s behavior. When we replace the offer selection strategy
from PERB with one based on our implementation of Expectimax, AltOffersLearning un-

fortunately suffers a further loss in performance.

5.4 Summary of Results

Figure 5.1 shows a comparison of average scores for the two versions of PERB and the
three versions of AltOffersLearning that we tested. Note that in order to show correct
proportions, the lower bound is at —80, which is the minimum possible score on the DD

board.

30

160 -

140
135.7

H Agent
5 PDAS

Tree

pERE
PE\KB—Decep{\cn
Leam’\ng-Re\'\a\)'\\‘\w

er.epx'\on
—Decep{\on

Lea\'d\\'\g— e\'\ab'\\'\w

\.ean'\'\ng—?\e\‘\ab'\\‘\x\{-o

Fi
gure 5
1:S
. umm

ary
of a
ve
rage scores f
or a
gent
Vers'

1018

31

Chapter 6

Conclusion

As shown in Figure 5.1, we actually achieve a small net improvement over the performance
of the baseline PERB agent. However, this improvement is entirely attributable to a single
modification — the addition of guaranteed deception to the agent’s transfer behavior. The
more theoretically interesting modifications — the reliability model and the game tree search
— actually caused declines in agent performance.

This does not, however, imply that these components cannot be useful in an agent
implementation. Our reliability model is a very reasonable way of expressing an agent’s
reliability for any single round, since it considers ratios of changes in wtility (as measured
by score), rather than simply ratios of changes in chip counts. However, as our results
show, the use of the reliability model as the sole determining factor for chip transfers is
not effective; choosing transfers reactively, in a “tit-for-tat” manner, is inadequate, as this
involves no reasoning about the future.

From the results in Section 5.3.1, as well as from the results of Carr et al., we find that
statistical classifiers can be surprisingly effective in predicting certain aspects of opponents’
behavior. It is likely possible to improve accuracy further by including additional attributes
from the game state. In order for predictors to become more useful in an agent strategy,
their role and number should be expanded.

The ineffectiveness of our Expectimax search most likely stemmed from its very limited
scope. Although it is necessary to constrain tree depth in a scenario with as large a branching

factor as AltOffers, our restriction of the search to a single entry point (MAKEGAMETREE-

32

ONMYOFFER) and a single game round meant that Expectimax’s utility calculations were
based on very uneducated guesses. At a minimum, the tree search should be expanded to
include rounds where the opponent is the first proposer or rejects the player’s proposal and
makes a counter-offer, and should recurse down to one or two subsequent rounds. At cutoff
points, it may be fruitful to try to create and use new predictors to estimate utility values,

rather than simply using the default best-use scores at those leaf nodes.

33

Bibliography

R. Carr, P. Roos, and B. Wilson. Opponent modeling in Colored Trails: Meta-proposals

and behavior predictors in a feasible game tree search. Unpublished., 2009.

M. Chalamish, D. Sarne, and S. Kraus. Programming agents as a means of capturing
self-strategy. AAMAS ’08: Proceedings of the 7th International Joint Conference on

Autonomous Agents and Multiagent Systems, pages 1161-1168, 2008.

B. J. Grosz, S. Kraus, S. Talman, B. Stossel, and M. Havlin. The influence of social
dependencies on decision-making: Initial investigations with a new game. AAMAS ’0/:
Proceedings of the Third International Joint Conference on Autonomous Agents and Mul-

tiagent Systems, pages 782—789, 2004.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA

data mining software: an update. SIGKDD Ezxplorations, 11(1):10-18, 2009.

S. Kraus. General specification for agent that is medium reliability and medium coopera-

tiveness. Email correspondence, September 2009.

E. Manisterski, R. Lin, and S. Kraus. Understanding how people design trading agents over
time. AAMAS ’08: Proceedings of the 7th International Joint Conference on Autonomous

Agents and Multiagent Systems, pages 1593-1596, 2008.
J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

S. Talman, M. Hadad, Y. Gal, and S. Kraus. Adapting to agents’ personalities in negotiation.
AAMAS ’05: Proceedings of the Fourth International Joint Conference on Autonomous

Agents and Multiagent Systems, pages 383—-389, 2005.

34

	Introduction
	Background
	Colored Trails
	The Alternating Offers Domain
	Related Work

	Agent Design
	Baseline Design
	A Learning Agent
	Myopic Reliability Model
	Deception at the End of the Game
	Game Tree Search
	Calculating Probabilities with Predictors

	Methodology
	Peer-Designed Agents
	Generating and Testing Classifiers
	Testing Agent Performance

	Results and Evaluation
	Transfer Strategy Based on Myopic Reliability
	Myopic Reliability with End-of-Game Deception
	Tree Search and Predictors
	Predictor Quality
	Proposal Strategy Based on Game Tree Search

	Summary of Results

	Conclusion
	Bibliography

