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ABSTRACT
This paper presents a novel method to describe and analyze strate-
gic interactions in settings that include multiple actors, many pos-
sible actions and relationships among goals, tasks and resources.
It shows how to reduce these large interactions to a set of bilat-
eral normal-form games in which the strategy space is significantly
smaller than the original setting, while still preserving many of
its strategic characteristics. We demonstrate this technique on the
Colored Trails (CT) framework, which encompasses a broad fam-
ily of games defining multi-agent interactions and has been used
in many past studies. We define a set of representative heuristic
metastrategies in a three-player CT setting. When players’ strate-
gies are chosen from this set, the original CT setting decomposes
into smaller, bilateral games that correspond to the well-known
Prisoners’ Dilemma, Stag Hunt and Ultimatum games. We formal-
ize a set of criteria that need to hold for a general CT setting in
order to guarantee the decomposition. Using sampling and simu-
lation, these criteria are shown to work in practice for many dif-
ferent instances of the CT game. Our results have significance for
multi-agent systems researchers in mapping large multi-player task
settings to well-known bilateral normal-form games in a way that
facilitates the analysis of the original setting.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]; J.4 [Social and Be-
havioral Sciences]

General Terms
Design, Experimentation

Keywords
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1. INTRODUCTION
Computer systems are increasingly being deployed in task settings
where multiple participants make decisions together—whether col-
laboratively, competitively or in between—in order to accomplish
individual and group goals. Recently a new testbed has been in-
troduced to enable evaluation and comparison between computa-
tional strategies for a wide variety of task settings, i.e. the Colored

Cite as: Metastrategies in the Colored Trails Game, Paper No. XXX,
Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), Yolum, Tumer, Stone and Sonenberg (eds.), May,
2–6, 2011, Taipei, Taiwan, pp. XXX–XXX.
Copyright (c) 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Trails (CT) framework [3].1 CT has spawned 30 publications in
diverse multi-agent settings, such as repeated negotiation, interrup-
tion management, team formation and space research [4, 12, 10].
CT is particularly attractive because it is grounded in a situated task
domain and is rich enough to reflect features of real-life interac-
tions. The CT framework encompasses a family of different games
that provide an analogue to the ways in which goals, tasks and re-
sources interact in real-world settings. CT is parametrized to allow
for increasing complexity along a number of dimensions, such as
task complexity, the availability of and access to information, the
dependency relationships that hold between players, and the com-
munication protocol. In abstracting from particular domains, CT
provides a general framework to analyze multi-agent interactions.

A fundamental problem when performing (game-theoretic) anal-
ysis of complex games is dealing with large action spaces. Once
we go beyond typical two-player two-action normal form games,
the curse of dimensionality occurs in terms of finding equilibria
and analyzing dynamics. For example, when analyzing the evolu-
tionary dynamics of auctions or Poker, we need to abstract over
atomic actions by introducing metastrategies [18, 16, 14], thus re-
ducing large-scale interactions to smaller games. In a similar vein,
this paper suggests a way of reducing multi-player interactions in
the CT framework to a set of smaller games. It provides a map-
ping between a particular CT task setting and normal-form games
in a way that preserves much of the strategic qualities of the orig-
inal setting. To this end, it defines a set of heuristic metastrategies
for each player that are domain-independent and make minimal as-
sumptions about the way other players make decisions. Moreover,
it lays down a set of criteria that need to hold such that the generated
CT game instances are “interesting”, implying that they allow a re-
duction to canonical social dilemma games taking place between
(pairs of) players, i.e., Stag Hunt, Prisoners’ Dilemma, and Ultima-
tum games. In these games, the metastrategies correspond to Nash
equilibria and/or Pareto-optimal strategies. The mapping from CT
game instances to well-known social dilemmas allows to compare
participants’ behavior in CT with prior results from these smaller,
more traditional settings. Given the mapping of the CT game to so-
cial dilemmas, our analysis is extended by assessing the effect of
adding social factors to participants’ decision-making process.

Results from simulation experiments that sample thousands of
CT game instances confirm that participants’ outcomes from play-
ing metastrategies in the original CT game correspond to the out-
comes from playing the same strategies in the reduced Prisoners’
Dilemma, Stag Hunt, and Ultimatum games. The results in this pa-
per have significance for agent-designers in that they facilitate the

1Colored Trails is free software and is available for download a
http://www.eecs.harvard.edu/ai/ct. A complete list of publications
can also be found at this link.



comparison of computational strategies in different task settings
with results obtained in more traditional idealized settings. More-
over they allow to generate new types of interactions in task settings
that meet scientifically interesting criteria.

2. RELATED WORK
The idea to consider aggregate or metastrategies for facilitating
(game-theoretic) analysis of a complex game is not new. In related
work, strategies are often aggregated using heuristics, allowing the
construction of e.g. heuristic payoff tables [18, 19]. Generally, a
normal-form-game payoff matrix is replaced by a heuristic payoff
table, since assembling all possible actions into a matrix is imprac-
tical for complex games (the resulting matrix would have too many
dimensions). A heuristic allows to define metastrategies over the
atomic actions, reducing the number of actions that have to be ex-
plicitly taken into account. A metastrategy typically represents a
philosophy, style of play, or a rule of thumb.

Recent domains in which the heuristic approach has been fol-
lowed include auctions [17, 11] and Poker [16]. In these do-
mains, expert knowledge is available to assist in the establish-
ment of suitable heuristics. For instance, in auctions, there are
many well-known automated trading strategies such as Gjerstad-
Dickhaut, Roth-Erev, and Zero Intelligence Plus [15, 14]. In Poker,
experts describe metastrategies based on only a few features, such
as players’ willingness to participate in a game, and players’
aggression-factor once they do participate. Examples of metastrate-
gies in Poker, based on these features, are the tight-passive (a.k.a.
Rock), tight-aggressive (a.k.a. Shark), loose-passive (a.k.a. Fish)
and loose-aggressive (a.k.a. Gambler) metastrategies. Depending
on the actions taken by a player over a series of games, it may be
categorized as belonging to a specific type of player, i.e., as using a
certain metastrategy. This allows researchers to analyze real-world
Poker games, in which the metastrategy employed by each player
in a particular series of games can be identified. Subsequently, ob-
tained payoffs in this series of games may be used to compute
heuristic payoff tables for each metastrategy [16]. These tables then
allow to study the evolutionary dynamics of Poker.

In this paper, we pursue a similar approach, although a lack of
heuristic expertise implies that we need to first perform an in-depth
study of the game and possible means of aggregating strategies.
Since expert knowledge on heuristics within the CT framework is
not available, we cannot readily label a certain chip exchange as
being, e.g., an egocentric or a social one. We aim to provide an
analysis that does allow us to label chip exchanges in this manner.

We discuss three distinct levels within the CT framework. On the
highest level, we have the complete framework itself, i.e., all pos-
sible CT games. The intermediate level identifies a certain game
within the framework, e.g., the three-player variant we study in this
paper. The lowest level is a game instance, e.g., one specific board
configuration with a certain allocation of chips and a certain posi-
tion for each of the three players and the goal. Going up from the
lowest level, we see that players can perform certain actions in a
CT game instance, can adhere to certain strategies in a CT game,
and can use certain metastrategies in the CT framework.

While we restrict our analysis to one CT game (the three-player
variant discussed below), the same analysis also applies to other
games within the framework. Therefore, the analysis indeed leads
to the identification of metastrategies. These metastrategies may be
used as a solid basis to come up with heuristic payoff tables.

3. COLORED TRAILS
We focus on a variant of a three-player negotiation variant [2] of

CT that includes a board of 4x4 squares, colored in one of five
colors. Each player possesses a piece located on the board and a
set of colored chips. A colored chip can be used to move a player’s
piece to an adjacent square (diagonal movement is not allowed)
of the same color. The general goal is to position pieces onto or
as close as possible to a goal location indicated by a flag. Each
player receives points purely based on its own performance. There
are three distinct players in the game: two proposers (P1 and P2)
and a responder (R). Figures 1(a) and 1(c) show two examples of
game instances. These instances include game boards with goal and
player locations, as well as the chip sets that have been allocated to
each player. The two instances will be used as running examples
throughout the paper. For example, in Figure 1(a), proposer P1
is missing a green chip to get to the goal (by moving left-up-up),
proposer P2 is missing a gray or green chip (moving up-up-right
or up-right-up) to get to the goal, and responderR is missing a gray
chip and a blue chip to get to the goal (moving right-3up-right).

Proposers can offer a chip exchange to the responder. The re-
sponder can accept exactly one or no proposal at all. Although
all players can observe the board, proposers cannot observe each
other’s chips, but can observe the chips of the responder. The re-
sponder can observe the chips of all of the players. Both proposers
make offers to the responder simultaneously; they cannot observe
each other’s offer. The responder can only accept or reject propos-
als and is not allowed to make a counter-proposal.

The CT game is divided into a sequence of three phases and ends
with an automatic evaluation.

Initial phase. The game board and the chip sets are allocated to the
players. This initial phase allows participants to locate their own
piece on the board and reason about the game.

Proposal phase. The two proposers can make chip exchange offers
to the responder.

Reaction phase. The responder is presented with the two propos-
als. It can accept one of the proposals or reject both.

Termination and Scoring Phase. In this phase, players automati-
cally exchange chips if they have reached agreement, and the icon
of each player is advanced as close as possible towards its goal
(using the Manhattan path with the shortest distance) given the re-
sult of the negotiation. The game ends and scores are automatically
computed for each player: for every step between the goal and the
player’s position, 25 penalty points are subtracted. For every chip
the player has not used, it receives 10 extra points. All players re-
ceive a 100 point bonus to guarantee that scores are not negative.

In the current paper, we use the following terminology associated
with scores. First, the base score for a player p ∈ {R,P1, P2} is
the score the player receives when there is no agreement.2 Second,
the gain for a player p and a chip exchange proposal s denotes the
difference in the score in the game (given that s is realized) and the
base score, and is denoted as Gp (s).The base score for p, i.e., the
gain when there is no agreement, is denoted as Gp (∅).

For example, in Figure 1(a), GP1 (∅) = 80. This is because if
there is no agreement, the player can only move one square to the
left by using its red chip. It is still two squares away from the goal,
yielding 2 × 25 = 50 penalty points. It has 3 remaining chips,
yielding 3 × 10 = 30 points. With the 100-point bonus, the total
base score becomes 80. In this particular game, GP2 (∅) = 80 as
well, with the optimal move being one to the right, using one red
chip. The responder has a base score of 75; it can spend two blue

2Whenever we are not referring to one specific proposer, we will use
the general notation ‘P ’ when we imply ‘P1 or P2’.



(a) First example Colored Trails game instance.
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(b) Gain graph of the game instance presented in (a).

(c) Second example Colored Trails game instance.
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(d) Gain graph of the game instance presented in (c).

Figure 1: Example Colored Trails game instances and gain graphs. In (a) and (c), the three players (R, P1 and P2) are shown, along
with their chip sets. The two proposers cannot observe each others’ chip sets. All players can see the board, on which their locations
are indicated, as well as the goal state (a yellow flag). In (b) and (d), we show the gain graphs for both proposers. These graphs
plot proposer gain versus responder gain for each possible proposal with non-zero benefit. The convex hull in this graph denotes the
Pareto-front. The meta-strategies PF, RF and QF are located on this front, as indicated. In (b), QF is a pure meta-strategy; in (d), it
is a mixed meta-strategy (of PF and RF), since there is no proposal on the convex hull between PF and RF.

chips to go right and upward, yielding a distance of 3 to the goal
(i.e., 75 penalty points) and 5 remaining chips (50 points), plus
100 bonus points. One possible proposal for P1 is to offer a red
and a grey chip for a blue chip, a green chip, and three yellow chips
from the responder. In this case the proposer can get to the goal,
and receives a gain of 60. Meanwhile, the responder can use this
exchange to get one square away from the goal, but it uses all of its
chips then. The gain from this exchange to the responder is zero.

4. DEFINING METASTRATEGIES
Although the rules of the CT game are simple, it is not trivial to
analyze. Both proposers need to reason about the tradeoff between
making beneficial offers to the responder and offers that are ben-
eficial for themselves, especially because they compete with each
other for making the best offer to the responder. Moreover, the num-
ber of possible strategies is large. In the example instance presented
in Figure 1(a), the number of unique proposals for P1 is 240, while
P2 can choose from 144 unique proposals.3 The responder can
choose to accept or reject any of these offers, so the size of the
strategy space for the responder is 240 × 144 × 2. The size of the
combined strategy space makes it difficult to analyze this game in
a principled way. In this section we show how to reduce this large
setting to smaller interactions in a way that preserves the strategic
flavor of the original CT scenario.

3Two proposals are unique if they do not use the same chips.

4.1 Initial Assumptions
We first describe two assumptions we make about the various play-
ers in the game. We will relax the first assumption later.

Rational responder. The responder R has three possible actions,
i.e., to accept the proposal of P1, to accept the proposal of P2, or
to accept neither of them. For the responder, the game is thus sim-
ilar to an Ultimatum game with proposer competition [9]. Initially,
in our analysis, we assume that the responder plays according to
a rational strategy. If both proposals do not provide it with a pos-
itive gain, it rejects both; if both proposals yield an equal gain, it
accepts one of them with equal probability for both; if one proposal
is strictly better, it accepts this proposal.

Semi-rational proposers. In order to select a strategy, i.e., a pro-
posal to offer to the responder, proposers have to take into account
the gain resulting from each proposal for themselves as well as the
responder. For our analysis, we assume that proposer P limits the
set of possible proposals to those that (1) lead to a non-negative
personal gain, i.e., GP (s) ≥ 0, and (2) have a chance of being ac-
cepted by the responder, i.e., GR(s) ≥ 0. For example, in Figure
1(a), P1 (P2) has 79 (50) valid proposals given this limitation.

4.2 Analysis of Scenario
In the canonical Ultimatum game, the optimal strategy s for the
proposer P against a rational responder maximizes its gain while
providing a non-negative gain for the responder (i.e., the optimal
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Figure 2: Extensive-form representation of the three-player ne-
gotiation variant of CT with two proposer metastrategies. The
payoff for the rational responder R is not shown.

strategy is argmaxsGP (s)). However, in the two-proposer set-
ting we consider, proposers compete with each other, which means
proposers have to take into account the gain of the responder. To
facilitate analysis, we plot the gains GR(s) against GP (s) for each
possible proposal s in a gain graph. Gain graphs for the two ex-
ample games are given in Figures 1(b) and 1(d). In the interaction
between a proposer and the responder, the Pareto-dominant propos-
als are located on the convex hull, as indicated in the figures.

Two proposer metastrategies. We note the following proposals
located on the convex hull.

1. Proposer focus (PF). PF is the strategy in which the pro-
poser first maximizes its own gain, and then finds the maxi-
mum gain for the responder.

PFP = argmax
s′

GR(s
′), s′ ∈ argmax

s
GP (s), s ∈ S.

2. Responder focus (RF). RF is the strategy in which the pro-
poser first maximizes the responder’s gain, and then finds the
maximum gain for itself.

RFP = argmax
s′

GP (s
′), s′ ∈ argmax

s
GR(s), s ∈ S.

We call these proposals metastrategies, as their definition does not
depend on the actual CT setting. The proposals corresponding to
the metastrategies PF and RF for the example CT games appear in
Figures 1(b) and (d). In the example instance of Figure 1(b), the
strategy PF for P1 corresponds to the chip exchange we mentioned
before, in which P1 offers one red chip and one gray chip in ex-
change for a blue, a green, and three yellow chips, leading to a
gain, if accepted, of 60 for P1 and 0 for R), while RF corresponds
to giving a blue chip, a red chip, and a gray chip in exchange for
two green chips (leading to a gain of 20 for P1 and 55 for R here).

Interactions between metastrategies. Suppose that proposers
play only the metastrategies PF and RF. We show an extensive-
form representation of the resulting CT scenario in Figure 2 (for
proposer 2). We do not list the payoff for the responder from play-
ing its rational strategy. In the figure, the two decision nodes of P2
are grouped into into one information set, because the players make
their proposals simultaneously. Once P2 has chosen, the static and

rational strategy of the responder (which is indicated in the figure)
leads to certain expected gains.4 Here, A denotes the gain that a
proposer receives when playing PF and being accepted; C denotes
the gain for RF being accepted. Clearly, this extensive-form game
can be represented in a 2x2 matrix game which omits the respon-
der’s strategy. The gain matrix of the symmetrical game between
the two proposers is given below.

PF RF

PF 1
2A, 12A 0,C

RF C,0 1
2C, 12C

Since the game between the two proposers is a 2x2 matrix game,
it is straightforward to analyze. The game depends on the relation-
ship between A and C, as follows. For A < 2C, the game is a
Prisoners’ Dilemma, with one Nash Equilibrium at (RF, RF) and
a Pareto-optimal outcome at (PF, PF). For A ≥ 2C, we obtain
a Stag Hunt game, with two Nash Equilibria; the RF-equilibrium
(shorthand notation) is risk-dominant, while the PF-equilibrium is
payoff-dominant. Both the Prisoners’ Dilemma and the Stag Hunt
game are well-known social dilemmas [13].

The strategic qualities of the original CT game are preserved in
the 2x2 matrix game played between metastrategies. In the original
CT game, the RF metastrategy corresponds to offering the best pos-
sible offer to the responder. RF is therefore also the risk-dominant
proposal in the original game, because it guarantees a positive gain
to the proposer. Even if both proposers play RF, the expected gain
for each proposer will be positive. In contrast, the PF metastrategy
is payoff-dominant but risky, because it provides a low (or even
zero) gain to the responder. It will yield the most positive possi-
ble gain (payoff) for the proposer if the other proposer also plays
PF, but will yield no gain at all otherwise. The proposers’ dilemma
in the original game (favoring themselves or the responder) is thus
accurately reflected in the reduced 2x2 matrix game.

In the example CT instance shown in Figure 1(a) and (b), we find
that the PF strategy yields a gain to the proposer of 60 and a gain
of 0 to the responder if accepted, while the RF strategy yields a
gain of 20 to the proposer and 55 to the responder. Hence, A = 60
and C = 20 here, and A > 2C; the game played between the two
proposers is thus a Stag Hunt. In a similar manner, we can conclude
that the CT game of Figure 1(c) and (d) is a Prisoners’ Dilemma,
because A = 25 and C = 15 yields A < 2C.

Introducing a third metastrategy. While we distinguish only two
metastrategies thus far, a proposer’s actual strategy smay be mixed,
yielding (in theory) infinitely many possible (mixed) strategies s
based on the two metastrategies.

We now demonstrate that a proposer can benefit from employing
a metastrategy other than such a mixed strategy s. This is illustrated
in Figure 3 (left and right). In the gain graph, all mixed strategies
of PF and RF are located on the straight line connecting PF and RF.
From the proposer’s perspective, any mixed strategy s is strictly
dominated by a strategy s∗ for which GP (s

∗) > GP (s). This con-
straint is met by all points to the right of s in the plot. Given that
the responder behaves rationally, we say that s∗ strictly dominates
s iff GR(s

∗) > GR(s). All points above s in the plot meet this
constraint. Thus, strategies that lie in the white area of the graphs
in Figure 3 strictly dominate the mixed strategy s.

4When calculating these expected gains, we assume that metastrat-
egy pairs (e.g., PFP1 and PFP2) yield the same gain for the re-
sponder, so the responder is indifferent to the two metastrategies.
However, a CT game may generally not be (fully) symmetrical, but
as we will see, games are symmetrical in expectation. We will come
back to this when discussing our experiments.
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Figure 3: Pure or mixed strategies on the convex hull may
strictly dominate a mixed strategy of PF and RF. In the exam-
ple on the left, we find a pure strategy s∗ on the convex hull
that strictly dominates a mixed strategy s of PF and RF. On the
right, a mixed strategy s∗ strictly dominates s.

In some cases, the convex hull may lie on the straight line be-
tween PF and RF, as for instance in the second example game (Fig-
ure 1(d)); then, there is no strategy that strictly dominates s. In
other cases however, as in Figures 3 and 1(b), the convex hull may
be located above the line PF-RF. In these cases, we can always find
a strategy s∗ that strictly dominates s, except if s is a pure strategy
itself, i.e., if s assigns a probability of 1 to a certain metastrategy.
For instance, in Figure 3 (left), we find a pure strategy s∗ on the
convex hull that dominates s. In Figure 3 (right), a mixed strategy
s∗ on the convex hull dominates s. In Figure 1(b), both proposers
have three pure strategies (and an infinite number of mixed strate-
gies involving one or more of these pure strategies) that dominate
a mixed strategy of PF and RF.

Thus, proposers indeed may benefit from employing additional
metastrategies, since these additional metastrategies may dominate
(mixed strategies of) the two metastrategies we already defined.
We therefore introduce a third metastrategy, named QF (where Q is
chosen simply because it is between P and R), which is to play the
median proposal on the convex hull. Note that the median may be
defined for any number of proposals on the convex hull; for an even
number, we probabilistically select a proposal from the two median
ones. Thus, proposals corresponding to the third metastrategy may
again be found in any CT game.

Figures 1(b) and 1(d) show the mixed metastrategy QF for the
two example CT instances. We see that the first instance has a pure
QF metastrategy which dominates a mixed strategy of PF and RF.
The gain graph shows that QF yields a proposer (responder) gain of
40 (35) here. The second instance has no strategies on the convex
hull that dominate a mixed strategy of PF and RF; still, QF may
be defined by choosing probabilistically from PF and RF. The (ex-
pected) gain for QF is then the average of the gains for PF and RF,
i.e., 20 for the proposers and 17.5 for the responder.

Interactions between three metastrategies. With three metas-
trategies, the game between the two proposers becomes a 3x3 ma-
trix game as follows.

PF QF RF

PF 1
2A, 12A 0,B 0,C

QF B,0 1
2B, 12B 0,C

RF C,0 C,0 1
2C, 12C

Here, A ≥ B ≥ C. As with the two-strategy game, we can find
different types of game depending on the relation between A, B,

and C. It is easy to see that potential equilibria are located on the
diagonal of the matrix. Moreover, as in the two-strategy game, (RF,
RF) is an equilibrium. Depending on the values of A, B, and C,
we may distinguish four different games. For all games in which
A < 2B < 4C, (RF, RF) is the sole equilibrium. For A ≥ 2B ≥
4C, all three diagonal strategies are equilibria. For A < 2B and
B ≥ 2C, the equilibria are (RF, RF) and (QF, QF). For A ≥ 2B
and B < 2C, we find equilibria at (RF, RF) and (PF, PF).

In the example of Figure 1(a), we findB = 40 (A = 60 andC =
20 still holds); thus,A < 2B andB = 2C, meaning the 3x3 matrix
game has two equilibria, i.e., the RF- and the QF-equilibrium. In
Figure 1(c), we find A = 25, B = 20 and C = 15, so A < 2B
and B < 2C, yielding a single equilibrium at (RF, RF).

Adding social factors to the responder model. Thus far we have
assumed the responder to be rational. Empirical evidence (in Ul-
timatum game settings) suggests that human responders are actu-
ally not fully rational [5]. One of the most well-known alternative
models for Ultimatum-game responder behavior is inequity aver-
sion [1]. The responder does not act directly on its gain GR(s), but
instead on a utility function UR(s), which depends on its own gain,
but also on how it compares to the gain of the proposer,GP (s). The
original model distinguishes two components in the utility function,
namely greed and compassion, both of which decrease the respon-
der’s utility in comparison to the actual gain. The greed component
is generally far stronger (in humans); we do not consider the com-
passion component here. Translated to our settings, the responder’s
utility function may be then defined as follows.

UR(s) =

{
GR(s) GR(s) ≥ GP (s)
GR(s)− αR (GP (s)−GR(s)) otherwise

There is one parameter, αR, which determines how strongly the
responder dislikes a proposal which gives a proposer more gain
than the responder.

To illustrate the effect of inequity aversion, we apply it to the
gain graph of proposer 1 in the first example game (Figure 1(a) and
(b)). The effect for αR = 0.5 is visualized in Figure 4. For pro-
posals that give the proposer more gain than the responder (i.e.,
below the diagonal), the utility (perceived gain) for the respon-
der is lower than the actual gain. As a result, some proposals that
may be accepted by a rational responder are not accepted by an
inequity-averse responder. As is visible from the figure, the convex
hull changes, as does the location of the PF metastrategy. If the re-
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gain) of the responder: the convex hull and the metastrategies
change. PF will no longer be accepted by the responder, which
means proposers need to offer PF’ instead.



sponder is inequity-averse and the proposers do not take this into
account, they may coordinate (without communication) to offer the
PF proposal, expecting that one of them will be accepted, while in
reality, the responder will reject both proposals.

Instead of offering PF, proposers should offer PF’, yielding a
gain of 50 instead of 60 in the example. They are able to find PF’
if they are aware of the inequity aversion present in the respon-
der (i.e., the value of αR), which implies they can calculate the
modified gain graph. We deal with both unaware as well as aware
proposers in our empirical evaluation.

4.3 Generalizing the analysis
In this section we show that our analysis may be generalized to
more than three metastrategies and other variants of the CT game.

An arbitrary number of metastrategies. We may introduce ad-
ditional metastrategies in a similar manner as the third one; e.g.,
we could have five metastrategies, corresponding to the minimal,
first quartile, median, third quartile, and maximal proposal on the
convex hull. Generally speaking, for nmetastrategies, we obtain an
nxn matrix game. The n diagonal strategies may each be equilib-
ria or not, except the ever-present RF-equilibrium. Depending on
the gains for each metastrategy pair, we may thus distinguish 2n−1

different possibilities for equilibria in the nxn game.

Generalizing to other CT variants. The analysis above is specifi-
cally performed on the three-player negotiation variant of CT. How-
ever, results generalize to other games within the CT framework,
since chip exchanges are a vital part of the framework [7]. We will
provide a few pointers here.

A common different variant is a two-player negotiation game
(i.e., one proposer and one responder), potentially with multiple
phases and/or alternating roles [8]. The one-shot two-player game
also allows us to construct the gain graph and identify the metas-
trategies. Since the dilemma (and the associated competition) be-
tween the proposers is missing, the single proposer may get away
with offering PF every time.5

More generally, the concept of the gain graph naturally extends
to negotiation games with any number of proposers and responders.
For instance, a game with three proposers and one responder leads
to a three-player social dilemma between the proposers, which may
be modeled for instance as a Public Goods game, and interactions
similar to the Ultimatum game between each proposer and the re-
sponder. In a game with multiple responders we can still construct
gain graphs between pairs of proposer(s) and responders, with an
Ultimatum Game with responder competition [6] taking place be-
tween these pairs. Analytical and experimental studies in the Ulti-
matum Game clearly indicate that players benefit from an increased
number of opponents in the opposite role (e.g., responders fare well
with more proposers) [6, 9].

5. EMPIRICAL EVALUATION
In this section, we outline how balanced and challenging instances
of the CT game may be generated. We then discuss how players
that perform actions according to the metastrategies may be heuris-
tically implemented. Finally, we generate a large number of games,
have our heuristic players play them, and evaluate the empirical
payoff tables, which can be compared with analytical results.

5.1 Criteria for balanced games
This section outlines three criteria that are essential to create well-
balanced and challenging instances of the the CT game.

5Repeated games fall outside the scope of this paper.

Baseline scores. The initial board state (positions and chip sets)
should yield baseline scores that are comparable for all three play-
ers. We generate games that limit the difference in baseline scores
to be less than ε.

max {GP1 (∅) , GP2 (∅) , GR (∅)}
−min {GP1 (∅) , GP2 (∅) , GR (∅)} < ε

Negotiation requirement. No player should be able to reach the
goal location on its own without engaging in a chip trade. We define
isSolution(P,C) = true iff player P can reach the goal given a
chip set C. The initial chip set of a player P is given by chips(P ).

¬isSolution(P1, chips(P1)) ∧
¬isSolution(P2, chips(P2)) ∧
¬isSolution(R, chips(R))

Mutual dependence. Due to the negotiation requirement, both pro-
posers depend on a subset of the responder’s chip set. In turn, the
responder relies on a subset of either proposer 1 or proposer 2. A
one-sided proposal (i.e. asking for all chips or dispensing of all
chips) may not lead to a chip set allowing both the proposer and the
responder to reach the goal.

∃CP1,CR ∈ chips(P1) ∩ chips(R) s.t.

CP1 ∩ CR = ∅ ∧ isSolution(P1, CP1) ∧ isSolution(R,CR)

∃CP2,CR ∈ chips(P2) ∩ chips(R) s.t.

CP2 ∩ CR = ∅ ∧ isSolution(P2, CP1) ∧ isSolution(R,CR)

We implement these three criteria by generating many pseudo-
random games and checking them against the criteria, keeping only
those games that match.

5.2 Experimental setup
For the empirical evaluation of the proposed metastrategies we gen-
erate a database of 10K games that adhere to the criteria listed
above (we chose ε = 20). Below, we discuss how the metastrate-
gies are implemented in heuristic players and how empirical pay-
offs are computed from games played between these players.

Heuristic players. We implemented three heuristic players, each
following one of the three metastrategies, i.e. PF, QF and RF. All
three heuristic players start by enumerating all possible chip ex-
change proposals. Proposals that yield negative gains for either the
proposer or the responder are neglected. Heuristic players follow-
ing metastrategies PF and RF are a straightforward implementation
of the definitions given earlier. Metastrategy QF requires to com-
pute the PF and RF strategy points in the gain graph, as well as
the convex hull connecting both.6 The median proposal on the con-
vex hull is then selected. For an even number, the heuristic player
probabilistically selects a proposal from the two median ones.

Computing empirical payoffs. A single entry of the empirical
payoff matrix is computed as follows. The row determines the
metastrategy played by P1, while the column determines the metas-
trategy for P2. For each game in the database, chip exchanges pro-
posed by the players are evaluated by the responder and if a pro-
posal is excepted, chips are exchanged and scores evaluated. The
resulting payoff is the difference between final and baseline scores
(i.e. gain) averaged over all 10K games. This process leads to a full
empirical payoff table for the game as a whole.

5.3 Results
In this section, empirical payoff tables obtained by the metastrate-
gies are presented and compared to the predicted payoff tables.

6While any convex hull algorithm is adequate, our implementation
is based on the time-efficient Graham scam algorithm.



Two-strategy game. With two metastrategies PF and RF, we obtain
an empirical payoff table as follows.

PF RF

PF 21.0, 20.6 2.9, 11.7
RF 11.8, 2.6 6.5, 6.2

The empirical payoffs yield a Stag Hunt game, with A ≈ 42 and
C ≈ 12. When we compare the empirical payoff table to the ana-
lytical one, we notice two things.

First, the game is nearly, but not completely symmetrical. This
may be explained by the relatively small size of the board, which
leads to relatively large differences (i.e. possible disbalances) be-
tween the two proposers. On the small board we use, symmetry
arises from repeated play. The game is guaranteed to be symmetri-
cal in expectation, since proposers’ positions are randomized.

Second, there are (small) positive values where we expected val-
ues of 0. In some instances, a certain proposer’s PF proposal is
preferred by the responder over the other proposer’s RF proposal.
Once again, this issue may be dealt with by using larger boards,
which would reduce the probability that PF ‘wins’ from RF. How-
ever, larger boards are (even) more difficult for human players.

Three-strategy game. The empirical payoff table for the three-
strategy game is given below. The values in the corners of the table
are identical to those in the two-strategy game.

PF QF RF

PF 21.0, 20.6 5.7, 24.3 2.9, 11.7
QF 24.5, 5.6 14.8, 14.2 6.0, 9.8
RF 11.8, 2.6 10.0, 5.7 6.5, 6.2

We see that B ≈ 25. It is interesting to consider the interactions
between the ‘neighboring’ metastrategies. Looking at the interac-
tion between PF and QF, we find a Prisoners’ Dilemma. The QF
metastrategy is very strong against PF, giving proposers a strong
incentive to defect. Between QF and RF, we find a Stag Hunt. The
payoff table thus yields a game with two equilibria, namely the QF-
and the RF-equilibrium.

Inequity aversion (unaware proposers). In our next experiment,
we determine the effect of introducing social considerations (in-
equity aversion) in the responder’s decision-making, without the
proposers being aware of this. We provide the empirical payoff ma-
trices for two reasonable values of αR, restricting ourselves to the
two-strategy game.

αR = 0.5 αR = 1.0

PF RF

PF 9.6, 9.9 1.2, 12.0
RF 12.0, 1.2 6.4, 6.3

PF RF

PF 5.3, 5.3 0.7, 11.9
RF 12.0, 0.7 6.5, 6.1

The second equilibrium (PF, PF) disappears, because proposers
expect their PF proposal to be accepted more than it actually is.
The game thus turns into a Prisoners’ Dilemma with one Pareto-
dominated equilibrium at (RF, RF). The higher the value of αR,
the stronger this effect.

Inequity aversion (aware proposers). We also investigate what
happens if the proposers do know that the responder is inequity-
averse. The payoff matrices for the same values of αR are:

αR = 0.5 αR = 1.0

PF RF

PF 17.0, 17.2 3.4, 11.3
RF 11.3, 3.2 6.5, 6.1

PF RF

PF 15.3, 15.1 4.6, 10.4
RF 10.5, 4.4 6.4, 6.1

The second equilibrium is back again; proposers appropriately ad-
just their PF proposals to the expectations of the responder. The
payoff for PF is (sensibly) lower against itself than in the original
game with a rational responder. PF does increasingly well against
RF, simply because PF is (slightly) more similar to RF when pro-
posers take into account the responder’s expectation.

6. DISCUSSION
The previous sections have provided conditions under which CT
games can generally be decomposed into a set of multiple normal-
form games that are characterized by social dilemmas (i.e., Prison-
ers’ Dilemma, Stag Hunt and Ultimatum games), as visualized in
Figure 5, using a number of metastrategies defined on the possible
chip exchange proposals in the game.
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Figure 5: Decomposing the three-player negotiation variant of
the Colored Trails Game.

We show that the metastrategy that favors the responder (RF) is
always an equilibrium in the reduced normal form game, regard-
less of the number of metastrategies. This is because the responder
has an advantage in the CT setting we consider, in that no player
receives a gain if it does not accept an offer. An empirical analy-
sis of a large set of game instances illustrates that, in expectation,
two metastrategies yield two equilibria, reducing it to a Stag Hunt
game. We may also find game instances that are Prisoners’ Dilem-
mas, i.e., with only the equilibrium that favors the responder. Using
three metastrategies in the same set of game instances also yields
two equilibria in expectation, namely those two metastrategies that
are most favorable for the responder (QF and RF).

Adding social factors to the responder allows this player to en-
force a higher payoff—essentially, the proposers are driven to de-
fection in the Stag Hunt or Prisoners’ Dilemma game they play, be-
cause the responder is better at exploiting the proposer competition
in the Ultimatum game component. This increased power for the
responder may be countered by introducing multiple responders,
as in an Ultimatum game with responder competition [6].

As noted, our analysis of a single game instance assumes that re-
sponders are indifferent between the gains from the two proposals
resulting from any pair of metastrategies, i.e., for the metastrate-
gies PFP1 and PFP2, we have that GR(PFP1) = GR(PFP2)
(and similar for QF and RF). If this condition does not hold, the
responder will favor one of the metastrategy proposals over the
other, which means the actual game instance does not reduce to
a Stag Hunt or Prisoners’ Dilemma. We observed that approxi-
mately 25% of the 10K games we generated (and that met our
three criteria) were actually games in which the responder is in-
different between metastrategy pairs. Of these 25%, approximately
one-fifth are Prisoners’ Dilemmas, and four-fifth are Stag Hunts.
The remaining games (i.e., 75%) were not symmetrical, meaning



that one proposer has a strategic advantage over the other proposer.
Even though our symmetry assumption thus does not hold for a
majority of generated game instances, our empirical results show
that, even for games in which the assumption does not hold, the
expected gains to proposers from playing metastrategies do in fact
correspond to Stag Hunt and Prisoners’ Dilemma games.

In case a certain experiment requires all games to be Stag Hunts
or Prisoners’ Dilemmas (i.e., not only in expectation), the assump-
tion of responder indifference can be enforced during game gener-
ation. We note that, for the case in which responders are assumed
to be rational, we do not need to make assumptions about the gains
to proposers from pairs of metastrategies (a rational responder does
not consider those gains), while for inequity-averse responders, the
gains to proposers for every metastrategy pair must also be equal,
i.e., GP1(PFP1) = GP2(PFP2) (and similar for QF and RF).

7. CONCLUSION AND FUTURE WORK
In this paper, we show how to reduce a large multi-agent task-
setting, i.e., a game in the often-used Colored Trails (CT) frame-
work, to a set of smaller, bilateral normal-form games, while still
preserving most of the strategic charachteristics of the original set-
ting. We provide a set of criteria and assumptions that need to hold
in order for the normal-form games to correspond to canonical so-
cial dilemma games from the literature. We show how to define
representative heuristic metastrategies in the CT setting that make
minimal assumptions about the other players. The games taking
place between metastrategies are shown to correspond to Prisoners’
Dilemma, Stag Hunt and Ultimatum games. We demonstrate that
the metastrategies’ analytical payoff tables, which we generated on
the basis of assumptions that are not always met, nonetheless cor-
respond to empirical payoff tables by sampling from thousands of
CT game instances and showing that the outcome to players from
using the metastrategies corresponds on average to the outcomes
from the social dilemma games.

Although our analysis and examples are based on a particular CT
scenario (a three-player take-it-or-leave-it game), they demonstrate
the possibility of using metastrategies to reduce other CT games
(e.g., games with a different number of players in each role, or even
games that are further removed from the game under consideration
here), and multi-agent interactions in general, to (social dilemma)
normal-form games. More precisely, the techniques we present ap-
ply to general multi-agent interactions in which optimal actions can
be computed, given that other players are using specified strategies.

We are currently extending our approach in two ways. First, we
are developing metastrategies that consider other social factors that
affect people’s behavior in task settings, such as altruism and gen-
erosity, also from the perspective of the proposers. Second, we are
considering more complex CT scenarios that include repeated ne-
gotiation, in which metastrategies will need to account for players’
trust and reciprocity relationships.
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