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Abstract—This paper proposes a new model for interruption
management, one which takes into account the costs and benefits
to both people and computer agents engaging in a collaborative
activity. The model aims to maximize the efficiency of the collab-
oration by better estimating the utility of interruption outcomes
and by reasoning about a possible mismatch between a computer
agent’s computation of this utility and a person’s perception of
it. The paper formalizes interruptions as a multi-agent decision
making problem and shows how to decouple it into smaller,
interacting sub-problems that can be analyzed independently and
efficiently. We show how to combine the sub-problems to compute
the utility of interruption correctly. This process is evaluated
empirically using an abstract two-player game that is analogous
to collaborative settings in which computer agents and people
interact, and one partner can interrupt the other in order to
obtain needed information. Results show that the magnitude of
the benefit of interruption is a major factor that influences the
likelihood that people will accept interruption requests. When the
benefit of the interruption is not clear-cut, people’s perceived type
of the partner (whether it was a human or computer) significantly
affected their perceptions of the usefulness of interruptions. These
results imply that system designers need to consider the possible
benefit of interruptions to collaborative human-computer teams
as well as the way that this benefit is perceived by people.

I. INTRODUCTION

Interruptions are important for effective collaborative work,
because agents often possess information required by others
on their team. This need to get information from another
agent arises in homogeneous multi-agent environments as well
as heterogeneous groups that include people and computer
agents. Individuals collaborating as part of such groups benefit
from their interactions with each other, gaining from sharing
information as well as by coordinating their activities. For
example, a (human) driver may see changes in weather condi-
tions that affect route selection while an automated navigation
system may not have access to this information, but may need
it to identify the best route. This need for interaction also
arises in groups involving a single computer and user. Consider
a writer’s collaborative assistant that autonomously searches
for bibliographical and citation information [1]. The system
primes the user for key-words, searches for bibliographical
data, and asks the user to choose the appropriate citations
from this list, or to refine the search. However, interruptions
are inherently disruptive. If they are not managed and timed
properly, they may negatively affect the emotional state and
awareness of the user and may reduce the overall task per-
formance of the user and the system [2]. For example, a

navigation system that continuously asks drivers for weather
conditions may distract their attention from the road, and a
writer’s assistant that asks whether to cite each paper that
meets the user’s keywords will disrupt the user’s writing
process. Thus, it is crucial for computer agents to manage
interruptions appropriately for working efficiently with people
and with other computer agents.

Our research aims to enable the design of efficient in-
terfaces, ones which maximize the likelihood that valuable
interruptions will be accepted. We propose a new model for
interruption management which synthesizes techniques from
decision theory and computer science, but adapts them to
collaborative contexts. Our model takes into account the costs
and benefits to all participants, both people and computer
systems, so that decisions to interrupt are based on the
collaborative benefit to the group. Unlike previous models of
interruption management, this model also reasons about the
possible mismatch between a computer’s estimate of the utility
of an interruption and a person’s perception of it. It focuses
on determining the factors that influence people’s perception
of interruptions, and their tendency to accept or reject them
when they are generated by a computer system.

Our study is focused on fast-paced collaborative settings
in which agents are distributed, conditions may be rapidly
changing, actions are occurring at a fast pace, and decisions
must be made within tightly constrained time frames with
uncertainty and partial information. We model this setting
as a multi-agent decision-making problem, and introduce a
novel method for decoupling this problem into individual,
simpler sub-problems which can be analyzed independently.
We show how to integrate between the solutions to these
constituent sub-problems in order to correctly compute the
value of an interruption for the participants in the global
multi-agent problem. These computations are used to inform a
computer agent for managing interruptions with people and is
compared with the way people actually perceive interruptions
in an empirical collaborative setting.

The investigations deploy a domain-independent, abstract
game which we designed to provide an analogue of human-
computer interactions in collaborative fast-paced settings in
which participants have access to different sources of informa-
tion, the environment is uncertain, and one of the players can
choose to interrupt the other player to obtain information. This
collaborative game provides a test-bed in which to identify



the factors that affect people’s decision making. It is built on
the Colored Trails (CT) infrastructure which has been used
previously as a research test-bed for a variety of multi-agent
decision-making problems [3].

We investigated the effect of three factors on human per-
ception of the usefulness of interruption requests in a set of
experiments which vary: the magnitude of the interruption
utility, the timing of interruptions, and the perceived type
of the partner (a human or a computer agent). The results
revealed that the magnitude of the utility of interruption is
the major factor affecting the likelihood that people will
accept interruptions. Interruptions offering significant benefit
to the collaboration are consistently accepted regardless of
the type of partner and the timing of the interruption. The
results also indicate that the perceived partner type and cost
of the interruption to the subject affect people’s perception of
interruptions when the utility gain is less clear-cut.

This paper makes four key technical contributions: (1) it
defines a model of interruption that considers the costs and
benefits to both the interrupting agent and the person with
whom that agent is interacting; (2) it defines an efficient
method for estimating the utility of interactions in uncertain
multi-agent environments; (3) it describes a new, multi-agent
game for investigating interruption decisions in fast-paced
domains; (4) it empirically investigates people’s decisions
about interruptions to reveal the major factors influencing
those decisions.

II. RELATED WORK

A key aspect of reasoning about interruptions in collabora-
tive settings is the ability to accurately estimate the costs and
benefits of the interruption to all parties so that the outcome
of the interruption positively affects group task outcomes.
Previous work on adjustable autonomy identifies the points
at which it is most suitable to initiate interactions with a
person, but does so without relating this decision to a user’s
mental state or the task being performed. Interruptions are
driven solely by system needs and managed based on benefit
to the system [4]. Prior work on interruption management
addressed user needs, and has focused mostly on the effect
an interruption has on a person’s cognitive state, rather than
the benefit of interruptions to collaborative activities [5]. Few
models have combined these two aspects into an integrated
decision making mechanism [6], and none have done so in
the kinds of fast-paced domains we consider.

While there has been significant work on mixed-initiative
system design, there has been little empirical work on how
people perceive interruption utilities and make interruption
decisions in human-computer interaction settings. Avrahami
et al. [7]. investigated the differences between a person’s self
report of interruptibility and other people’s predictions about
that person’s interruptibility. However, this work considered
face to face human interaction, rather than human-computer
interaction. Gluck et al. [8], focused on designing notification
methods to increase human perception of utility whereas Bunt
et al. [9] showed that displaying system rationale to people

may increase person trust to computer systems. Nevertheless,
little attention has been paid to the possible discrepancy
between a computer agent’s calculation of the utility of an
interruption and a person’s perception of its usefulness. The
failure to estimate this accurately may cause a person to reject
a valuable interruption, and thus lead to a missed opportunity
to improve team performance, thereby turning what could have
been a beneficial interruption into a performance degrading
disturbance.

III. THE INTERRUPTION GAME

This section describes the design of a special-purpose game
for investigating the interruption management problem in a
setting that is not tied to a specific domain. The “interruption
game” involves two players, referred to as the “principal” and
the “agent”. Each player needs to complete an individual task.
The game is collaborative in that the score for each player
depends on its own performance as well as the performance
of the other player. The players share a joint score function
that is the cumulative score of both players. The agent player
lacks critical information about its task, which is known to the
principal player. Thus, the agent has incentive to request this
information from the principal by initiating an interruption,
and the principal has reason to provide the information in order
to improve the joint performance. Providing this information
is costly for both players. When the agent deliberates about
whether to ask the information, or when the principal delib-
erates about whether to reveal the information to the agent,
the players need to weigh the trade-offs associated with the
potential benefit to the agent player with the detriments to their
individual performance in the game.

The game is played on a board of 6x6 squares. Each player
is allocated a starting position and a goal position on the board.
The game comprises a fixed, known number of rounds. At each
round, players advance on the board by moving to an adjacent
square. The goal of each player advances stochastically on the
board according to a Gaussian probability distribution centered
at the current position of the player. ' Players earn 10 points
in the game each time they move to the square on which
their assigned goal is located and the goals are reassigned to
a random position on the board. Players can see the positions
of both players and the goal location of the other player, but
they differ in their ability to see their own goal location: The
principal can see the location of its goal throughout the game,
while the agent can see the location of its goal at the onset of
the game, but not during consecutive rounds.

At any round, the agent can choose to interrupt the principal
and request the current location of its goal. The principal is
free to accept or reject an interruption request. If the principal
rejects the interruption request, the players continue their
individual play. If the interruption is accepted by the principal
agent, the location of the agent’s goal in the current round
(but not in consecutive rounds) is automatically revealed to

The movement of the goal is restricted in that it does not move closer to
the position of the player.
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Fig. 1. Game Screen-shot: me is the principal player, smiley is the agent
player, G'me is the principal’s goal, G spmiiey is the agent’s goal. The degree
to which each square is shaded represents the agent’s uncertainty about its
goal. Dark squares imply higher certainty.

the agent. There is a joint cost for revealing this information
to the agent, in that both participants will not be able to move
for one round. The agent cannot interrupt the principal more
than once.

The rules of the game also require the agent to provide
the principal with its belief about the location of its goal.
This information is available to the principal when it needs
to decide whether to accept an interruption. A snapshot of the
game from the perspective of the principal player is shown in
Figure 1. The rules of the game provide incentives to players
for reaching their goals as quickly as possible and interruptions
initiated by the agent are critical determinants of players’
performance. The agent’s uncertainty about the location of its
own goal increases over time, and its performance depends on
successfully querying the principal and obtaining the correct
position of its goal.

An interruption is potentially beneficial for the individual
performance of the agent, who can use this information to
direct its movement, but not for the individual performance of
the principal, who has complete information about the world.
The success of both players in the game depends on the agent’s
ability to estimate the collaborative value of interruption at
each point in the game, and use that information to choose
when to interrupt the principal.

The interruption game is not meant to model or specify
a complete domain or application. Its purpose is to provide
a simple setting in which to study the factors that influence
interruption management in collaborative settings. It is anal-
ogous to the types of interactions that occur in fast-paced
collaborative settings described in Section I. For example,
the principal player in the interruption game may represent
the user of a collaborative system for writing an academic
paper, and the agent may represent the collaborative assistant

responsible for obtaining bibliographical data. While both
of the participants share a common goal of completing a
document, each of them must work independently to complete
its individual task, such as composing paragraphs or searching
for bibliographical information. This aspect is represented in
the interruption game by assigning an individual goal for
each player. The movement of these goals on the board
corresponds to the dynamic nature of these tasks. For example,
the user may not know the next paragraph to write, and the
system may have uncertainty about the search results for new
bibliographical data. The agent’s lack of information about its
own goal location in the game corresponds to the uncertainty
of a system about the preferences and intentions of its user,
such as which bibliographical information to include in the
paper. The ability to query the user for keywords and to
choose among different bibliographies provides the system
with valuable guidance and direction but may impede the
performance of both participants on their individual tasks.
This is because the system needs to suspend its search for
bibliographical data when it queries the user, and the user may
be distracted by the query. This dynamic cost of interruption
represents the costs incurred to both users and computer agents
due to task switching and task recovery for initiating and
responding to an interruption.

IV. MODELING INTERRUPTION OPPORTUNITIES

In this section we show that the interruption game can be
formalized as a multi-agent decision-making problem under
uncertainty, and provide efficient methods for computing play-
ers’ estimates for the benefit of interruptions in the game.
These models are not meant to predict how people play
the interruption game, or respond to interruption requests in
general. Rather, they provide a way to compute a theoretical
baseline, which is a fully rational computational estimate for
the value of interruption in the game. In the empirical section,
we use this baseline to enable empirical analysis of human
behavior in mixed-initiative settings. These analysis allow the
study of the efficacy of these models when they are used by
computers to interact with people in the game under various
experimental conditions.

The interruption game can be modeled as a Decentralized
Markov Decision Process (Dec-MDP) [10], a formalism for
multi-agent planning that captures the collaborative nature
of the interruption game and its associated uncertainty. A
Dec-MDP includes a set of states with associated transition
probabilities, a set of actions and observations for each agent,
and a joint reward function. A solution of a Dec-MDP is
an optimal joint policy for all agents that is represented as
a mapping from states to actions.

To model the interruption game, the state space of the Dec-
MDP will combine all of the information relating to the tasks
of both players, including their positions on the board, the
positions of their goals, the current round and the belief of
the agent about its own goal position. The solution of Dec-
MDP will assign a policy to the agent that initiates interruption
requests when they are expected to result in a benefit to



both players according to the joint reward function, and will
assign a policy for the principal to accept interruption requests
with actual positive benefit. In this way, the representation is
able to capture the collaborative and stochastic aspects of the
interruption game. Unfortunately, finding optimal solutions to
Dec-MDPs is NEXP-complete [11]. The size of state space
makes it infeasible to compute the complete joint policy for
both players in the interruption game.

However, our goal is not to exhaustively compute optimal
policies in the interruption game, but to be able to generate
interruptions when they are perceived to be beneficial to the
collaboration. We hypothesized that such interruptions would
be likely to be accepted by people. To do so, we will exploit
an important characteristic of this game: When players are
not making or replying to interruption requests, they are
performing their individual tasks, and each player only needs
to consider its individual score in the game. In this case,
the two tasks are essentially independent, and they can be
solved separately. Because the agent can only interrupt the
principal once, the expected utility of an interruption can
be computed efficiently, because an interruption request will
render the two tasks independent from the interruption moment
until the end of the game. When the principal is interrupted
by the agent, the principal does not need to consider future
opportunities of interruptions as the tasks of both players are
completely independent of each other for game turns following
the interruption request. Thanks to this decoupling, at each
turn, the policy for the agent is to interrupt and request
information from the principal when it is deemed beneficial
for both participants. We shall now detail how to solve the
individual tasks for both participants in the game, and how
to combine these solutions in order to devise strategies for
interruption management in the game.

A. Computing a Policy for the Principal

The principal has complete information about the game, and
its task can be modeled as a Markov Decision Process (MDP).
Let B denote the set of board positions; | B| denotes the size
of the game board; p € B, g € B are the positions of the
principal and its goal respectively; m € A is a movement
action of the player; R is the reward associated with reaching
the goal; P(¢’,p,g) is the probability of the goal position
moving from position g to position g’ when the player is in
position p. The state space of the MDP includes every possible
position of the principal and its goal at each round. We denote
S% = (p,g) to be the state at round h and induce a state
transition function 7' that assigns a probability to reaching
state S]@,H from S% given action m. T can be directly derived
from P.

The reward function assigns the score in the game for
reaching the goal if an action transitions a player to its goal
square, and 0 otherwise.

h 10 ifp+m=g
R(Sp,m) = { 0 otherwise

Let II denote the optimal policy for the principal agent in

6]

the game. The value V'r(S”) of this policy at state S
maximizes the reward at state S% for an action m and future
states given the transition probability function,
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We compute the optimal policy and its value using ExpectiMax
search. In this process we grow a tree with two types of nodes,
decision nodes and chance nodes. There is a decision node
for each state in the MDP, and each child of a decision node
is labeled with a movement action for the principal. Chance
nodes represent moves of nature, and each child of a chance
node is labeled with a possible movement of the goal of
the principal, and is assigned a probability according to the
transition function. When traversing the tree, we recursively
compute a value for each chance node that is a weighted
average of the value of each of its children according to its
probability. We compute a value for each decision node by
choosing the child with the maximal value, and select that
action. With memoization, the number of nodes generated by
the search is bounded by |B|? - |H|, which is polynomial in
the number of rounds in the game.

B. Computing a Policy for the Agent

The agent cannot observe the position of its goal on the
board, and without interrupting the principal it receives no
information relating to this position. We model its task as a
No Observation Markov Decision Process (NOMDP), which
is a special case of an MDP with no observations. The state
space for this model includes the position ! of the agent on
the board, its belief b € A B over its goal position, and current
turn h. We denote the state for the agent as S% = (I,b). As
we are modeling the agent’s individual task, rather than its
interaction with the principal, we leave out the interruption
action and use the set of actions A and reward function R
is identical to the ones described for the principal agent. To
compute the optimal policy we need to account for the fact
that after each turn h, the agent updates its belief that the goal
has moved to a new position in turn h + 1. This is done by
summing over each of the possible initial positions ¢ € B for
the goal. Formally, b is updated to b according to the goal
movement distribution P as follows:

= b(o)

ceEB

ve' € B,b (¢ P(d,l,c) )

The state at round h+ 1 for the agent is %! = (I’ '), where
I’ is the position of the agent at h+1, and b’ is computed using
Equation 3. The value of an optimal policy for the agent II%
at state S = (I,b) can thus be computed using Equation 2,
substituting IT% for Il and S4 for Sp.

Because the belief of the agent about its goal position
is incorporated into the state space, there are an infinite
number of states to consider, and using ExpecitMax in a
straightforward fashion is not possible. However, applying the



belief update function after each turn, only a small number of
states turn out to be reachable. The deterministic belief update
function maps each combination of states with full information
(i.e., states in which the agent knows the correct position of its
goal) and the number of turns since full information to a single
belief state, thus to a single state. As a result, we can grow the
search tree “on the fly”, and only expand those states that are
reachable after each turn. Memoization is not possible in this
technique, and thus the complexity of the complete search is
exponential in the length of the horizon.

C. Computing the Benefit of Interruption

To compute the benefit of an interruption, its effect on both
the agent’s and the principal’s individual performance must
be taken into account. It is the aggregate of these two effects
that determines the utility of interruption. An interruption is
initiated by the agent, but it is only established if the principal
accepts it. The effect of an interruption on the individual game
play of a player is the difference of the values of two states;
one in which an interruption is established, and other in which
it is not. Given the principal and its goal are located on squares
p and g respectively in game round h, let EUSNT(S?% = (p, g))
denote the expected utility of the principal when it is not
interrupted, and pursues its individual task. This is equal to
the value for the principal of carrying out its individual task
as shown in Equation 2. Thus we have

EUNT(SE) = VTP (Sp) (4)

For the agent that does not get to observe its own goal position,
let EUY!(S% = (1,b)) denote the expected utility of the agent
when it is not interrupted, and pursues its individual task. In a
similar fashion to the principal’s case, this is the value to the
agent of carrying out its individual task. Thus we have,

EUYT(Sh) = VITa(sh) (5)

We now show how to compute the expected value of
interruption for both participants. Let EUL(S% = (p,g))
denote the expected utility for the principal when it accepts
an interruption. If the principal player is interrupted, it cannot
move for one round, but its goal may move stochastically
according to the probability distribution P. We denote the
new goal position as g"*!. Given our constraint that there
can only be one interruption made in the game, the benefit
of interruption for the principal is the expected value of its
individual task in future rounds, for any possible position of its
goal. Formally, the utility of interruption for state S”, denoted
EUL(S}) is computed as follows:

> Pg"p.g) VIR (SR =

gh+1 €B

EUH(S}) = )

(p,g
(6)

If the agent successfully interrupts the principal, the prin-
cipal will reveal the position of the agent’s goal. The agent
will update its belief about its goal position in the following
round, and use this belief to perform its individual task in
future rounds. However, when it deliberates about whether to

interrupt in the current round, it needs to to sum over every
possible position of its unobserved goal, according to its belief
about the goal location. Let S% = (I, b) be the current state of
the agent, including its position on the board and belief about
its goal position. Let g denote the current position of its goal.
The expected value for interruption for the agent is denoted
EUJ and is computed as follows:

Z b VHA Sh-i—l

geB

EUA(SH) = (1,0')) (N

Here, V' refers to the belief state of the agent in which
probability 1 is given to the true position of its goal as revealed
by the principal, and updated once to reflect the stochastic
movement of the goal in turn h.

D. Deciding Whether to Interrupt

By combining the expected values of the principal and agent
players with and without interruption, it is now possible to
compute the agent’s estimate of the benefit of an interruption.
We denote EBIp(S?) to be the expected benefit of interrup-
tion for the principal given S%, which is simply the difference
in utility of the principal between accepting and interruption
and carrying out its individual task.

EBIp(Sp) = EUL(Sp) — EUR ' (Sp) ®)

The expected benefit of interruption for the agent is denoted
EBIA(S%) and is computed similarly:

EBI4(S}) = EUA(S}) — EUY'(Sh) 9)

The interruption game is collaborative in that the combined
performance of both participants determines their individual
scores. The agent can observe the state S% of the principal, and
for any combined state S" = (S%, Sh), the agent will consider
the joint expected benefit of interruption to both participants,
EBI, and choose to interrupt if this joint benefit is positive.

EBI(S") = EBIp(S%) + EBIA(S%) (10)

For any combined state S”, the optimal strategy for the
agent is to interrupt the principal if the expected benefit of the
interruption (E'BI) is larger than the expected value of acting
individually. The agent cannot observe the correct position of
its goal and estimates the benefit of interrupting under this
uncertainty. Thus, not every interruption initiated by the agent
is truly beneficial for the team. In contrast, the principal can
observe the position of agent’s goal and can capture the actual
benefit of the interruption, denoted ABI with certainty. Any
interruption with positive ABI offers a positive benefit to the
team. The value of ABI is the sum of the individual benefits
of interruption to both the principal and the agent. However,
the principal knows the belief distribution of the agent’s goal,
as well as the correct position of its goal, and is thus able
to compute an informed estimate about the value of revealing
this information to the agent.

Let g, be the agent’s goal position, the actual benefit of
interruption for both participants given states S and S% is

ABI(S") = EBIp(S}) + EBIp.A(S%) (11)



Here, the term EBIp 4(S%) refers to the principal’s percep-
tion of the agent’s benefit from revealing the goal position g,,
where [ is the current position of the agent, b’ refers to the
belief state of the agent in which probability 1 is given to g,
and updated once.

EBIpa(Sh) = VI (SE™ = (L0)) - EUYT(S})  (12)

The advantage of the decision-making model introduced
above is that it reduces the complexity of the multi-agent
decision making process to that of two separate single agent
decision making processes. Because the agent is allowed to
interrupt only once during a game-play, the decoupling method
is able to accurately capture the benefit of an interruption ini-
tiated by the agent. Our model assumes that principal players
are fully rational and computationally unbounded. In the case
of a computationally unbounded and rational principal player,
we would expect any interruption with positive ABIT to be ac-
cepted, and any interruption with negative ABI to be rejected.
In the empirical investigations described in the next section,
baseline values are compared with the subject responses to
detect the possible mismatch between a computer’s estimate
of the benefit of an interruption and a person’s perception of
it, and to identify a subset of factors that affect the way that
humans perceive the effectiveness of interruptions.

V. EMPIRICAL METHODOLOGY

This section evaluates the computational strategies we de-
rived for playing the interruption game in an empirical setting.
A total of 26 subjects participated in the study. The subjects
were between ages of 19 and 46 and were given a 20 minute
tutorial of the game. Subjects played between 25 to 35 games
each, and were compensated in a manner that was proportional
to their total performance.

During the empirical evaluation, all subjects were allocated
to play the roles of principals, while the role of the agent was
assigned to a computer that used the methodology described
in the previous section to play the interruption game. Each
game proceeded in the manner described in Section III. In
particular, the agent could observe the board, the location of
the participants, the goal of the principal agent, but not its own
goal location. The principal had full visibility of the board,
including the belief of the agent about its goal location, as
shown in Figure 1. At each game, the agent is allowed to
initiate an interruption once to acquire the correct location of
its goal from the principal. As we mentioned, at each turn of
the game, the policy of the agent is to interrupt only if the
expected benefit of an interruption (Z2BI) is positive, given
its uncertainty about the position of its goal.

Interruptions were generated by the computer agents at
different points in the game with varying actual benefits, game
levels and perceived partner types. We measured people’s
responses to these requests given the game conditions at the
time of interruptions, which included the number of turns left
to play, the positions of both players on the board, and the
agent’s belief about the location of its goal.

As principal players have full visibility through the game,
we hypothesized that subjects are likely to perceive the benefit
of an interruption using a similar computation to that of
Equation 11, which computes the actual benefit of interruption
(ABI) given the current game conditions. In this case, they
would be likely to accept an interruption if it offered a higher
benefit to both participants. The game scenarios were varied
to have different ABI values to understand the way subject
responses change with respect to benefit of interruptions.
The strategy used by the computer playing the agent role in
each game was to interrupt if the joint expected benefit of
interruption was positive, by computing the value of EBI
using Equation 10. Because the agent makes interruption
decisions under the uncertainty about its goal position we
did not expect all of its interruption requests to be accepted
by the principal. However, we hypothesized that an agent
using the £’ BI estimate to interact with people will choose to
interrupt when they are likely to accept the offer. To investigate
the effect of the timing of an interruption on the subjects’
likelihood of acceptance, we varied the level of the game that
an interruption is initiated. Lastly, we expected that the type
of agent player (whether a computer or human) will affect the
way people respond to interruption requests. For this reason,
subjects were told they would be interacting with a human for
some games, however they were always paired with an agent
2

Subjects were given randomly generated game scenarios
that vary the actual benefit of interruption to both participants
(ABI) to cover four types of values: -1.5 (small loss), 1.0
(small gain), 3.5 (medium gain), 6.0 (large gain). These values
represent the smallest and largest benefit values that can be
generated from interruptions with positive expected benefit
(EBI), which is a necessary condition to initiate interruption
requests by the agent player. The levels in the game in which
interruptions occurred varied to cover the beginning of a game
(level 3), the middle of a game (level 5) and the end of a game
(level 7). There were 540 game instances played when the
perceived agent was a computer (PP:Computer) and 228 data
points when the perceived agent was a person (PP:Person).

VI. RESULTS AND DISCUSSION

The following results analyze a total of 768 game instances
collected in our study. Table 1 shows interruption acceptance
rates for different levels and ABI values for the same game
instances when perceived partner type (PP) is person or agent.
The optimal policy for the principal agent is to accept an
interruption if its associated benefit (ABI) is positive, and
reject otherwise.

As the results of Table 1 show, the utility of an interruption
is the major factor influencing the probability that an interrup-
tion will be accepted by a person. The interruption acceptance
rate increases significantly as the benefit of interruption rises
from -1.5 to 1.0 (p < e~ 2%, @=0.001) and from 1.0 to 3.5

2 Approval was obtained for the use of human subjects in research for this
misinformation.



PP:Computer || Level 3 Level 5 Level 7
ABI -1.5 0.16 0.16 0.41
ABI 1.0 0.27 0.7 0.81
ABI 3.5 091 0.97 0.79
ABI 6.0 0.91 0.95 0.95
PP:Person Level 3 Level 5 Level 7
ABI -1.5 0 0.11 0.44
ABI 1.0 0.72 0.94 1
ABI 3.5 0.91 0.94 0.88
ABI 6.0 1 0.88 1
TABLE I
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Fig. 2. Effect of interruption benefit and perceived partner type on
interruption acceptance rate

(p=0.0013, a=0.01). However the rise from 3.5 to 6.0 does
not further improve the acceptance rate. These results confirm
that people were successful at perceiving interruption benefits
above a certain threshold. Similarly, when an interruption
is costly for the collaboration, people are significantly more
likely to reject the interruption. However, subjects varied in
their responses to interruptions offering slightly positive gains,
indicating the difficulty to estimate the benefit of interruption
when its usefulness is ambiguous.

Figure 2 summarizes the acceptance rates of interruption as
a function of the actual benefit of interruption and perceived
partner type (person vs. computer). We divide the figure into
three regions of interruption benefits: small losses (Region
1), small gains (Region 2), and large gains (Region 3). The
analysis shows that for large gains (Region 3), changing the
perceived partner type does not affect the likelihood that
the interruption will be accepted. Similarly, for interruptions
offering small losses (Region 1), the perceived partner type
does not affect the interruption acceptance rate. In contrast, for
interruptions offering small gains (Region 2), the acceptance
rate is significantly larger if the perceived partner type is a
person (p = 3 x 1075, @ = 0.001). This result implies that
when the benefit of interruption is straightforward, people
do not care whether the initiator of the interruption is a
person or a computer. However, for those cases in which
the benefit of interruption is ambiguous, people prefer to
accept those interruptions that originate from other people.
This result suggests that agent designers need to consider the
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Fig. 3. Correlation of interruption acceptance rate with the cost of interruption
to subjects (-ABIp) for small gains and losses.

way they present interruptions to their users in cases where
their perceived benefit is ambiguous. It also aligns with recent
studies showing that mutual cooperation is more difficult to
achieve in human-computer settings as compared to settings
exclusively involving people [12].

Figure 3 shows the effect of interruption timing (the level
of the game) on people’s acceptance rates for interruptions of
small losses and small gains (The interruption timing does not
affect the acceptance rate for interruptions of large gains). We
expected that interruptions occurring late in the game (i.e.,
with fewer number of turns left in the game) will be more
likely to be accepted when they incur positive benefit, and
rejected when incurring a loss. However, as shown by the
Figure 3, as the game level increases, so does the acceptance
rate for interruptions of both small losses (ABI -1) and small
gains (ABI 1). There is a significant increase in the acceptance
rate when game level increases from 3 to 5 (p=0.002, a=0.01)
and from 5 to 7 (p< 1075, a=0.001).

One factor that may explain the correlation between the
acceptance rate and the game level for interruptions of small
gains and losses, is the cost of interruption to the subject.
As shown in Figure 3, the cost of interruption to the subject
(ABIp) decreases as game level increases. Thus, for interrup-
tions of small gains and losses, we found that the acceptance
rate is negatively correlated with the cost of interruption to the
principal. In addition, it was revealed that the benefit of the
interruption to the principal (ABIp) is a better predictor of the
acceptance rate than ABI 4, the benefit of interruption to the
agent (logistic regression SE = 0.05, R? = 0.19, p < 0.001).
Thus, human subjects tend to overestimate their own benefit
from interruptions as compared to the benefit for the agent.
Consequently, the benefit of interruption to person may be
weighted more in person decision making model than the
benefit of the interruption, and people may be more likely
to accept an interruption with low ABIp among interruptions
with identical benefit. Further study is required to determine
whether these conjectures hold and better understand the
correlation of acceptance rate with the cost of interruption
to the person. This conjecture is supported by some subject
responses to survey questions regarding their strategies for
accepting interruptions. Answers include:



“If the agent was in the totally wrong direction and I had
several moves left, I would allow the interruption. I always
wanted the sure thing for myself.”
“If the collaborator was way off in knowing and had enough
moves to likely catch it after I told the location, I accepted. If
it compromised my ability to get my goal, I declined.”
Lastly, we emphasize that these results are a first step
in understanding the human perception of interruptions in
collaborative settings. Our goal is not to suggest that the
computational strategies we derived for the interruption game
are directly applicable for interruption management other
domains. Rather, it is to suggest that effective interruption
management needs to consider the collaborative benefit of
interruption to both user and system, and to point system
designers to the types of factors that people consider when they
reason about interruptions. In future work, we plan to extend
the study to better understand the effects of computational
and cognitive complexity on people’s interruption strategies,
focusing on the possible role of trust and overestimation of
costs.

VII. CONCLUSION AND FUTURE WORK

We have presented a new computational model for interrup-
tion management based on computing the collaborative utility
of an interruption to participants, and showed that this compu-
tation can be done efficiently and correctly. We evaluated the
model in a specially designed human-computer collaborative
setting. We showed that the actual benefit of interruptions to
both computer agents and people is the major factor affecting
the likelihood that people will accept interruption requests.

We also showed that our suggested methods for comput-
ing the perceived benefit of interruption align with people’s
behavior. In particular, we found that interruptions of high
collaborative benefit are very likely to be accepted by people
independent of the level of the game and the perceived partner
type. For interruptions of small gains people were more
likely to accept interruptions initiated by other people than
by computers. This result implies that when the benefit of
interruption is straightforward, people do not care whether
the initiator of the interruption is a person or a computer.
However, for those cases in which the benefit of interruption
is ambiguous, people prefer to accept those interruptions that
originate from other people.

Our empirical study yielded a number of insights about
human decision making in the context of human-computer
collaboration and fast-paced domains. Understanding the way
that people make interruption decisions will enable the de-
velopment of better mechanisms for initiating interruptions,
focusing on the interruptions that are more likely to be
accepted. These investigations will provide the foundation for
building agents that collaborate with people efficiently without
overburdening them.
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