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Abstract

Reciprocity is a key determinant of human behavior and has
been well documented in the psychological and behavioral
economics literature. This paper shows that reciprocity has
significant implications for computer agents that interactwith
people over time. It proposes a model for predicting peo-
ple’s actions in multiple bilateral rounds of interactions. The
model represents reciprocity as a tradeoff between two so-
cial factors: the extent to which players reward and retaliate
others’ past actions (retrospective reasoning), and theiresti-
mate about the future ramifications of their actions (prospec-
tive reasoning). The model is trained and evaluated over a
series of negotiation rounds that vary players’ possible strate-
gies as well as their benefit from potential strategies at each
round. Results show that reasoning about reciprocal behavior
significantly improves the predictive power of the model, en-
abling it to outperform alternative models that do not reason
about reciprocity, or that play various game theoretic equilib-
ria. These results indicate that computers that interact with
people need to represent and to learn the social factors that
affect people’s play when they interact over time.

Introduction
A large body of evidence in the behavioral sciences has
shown that people retaliate or reward each other’s actions
despite the absence of direct material benefit (Falk & Fis-
chbacher 2006). Such reciprocal behavior drives people’s
social relationships, bringing about and maintaining cooper-
ation, delivering punishment as well as expressing forgive-
ness. For example, people have been shown to pay a high
cost in order to punish defectors in repeated interactions in
public-good type games (Camerer 2003).

Recent technological developments have created the need
for computers to interact with people in applications such
as online marketplaces, military simulations, and systems
for medical care (Daset al. 2001; Pollack 2006). While
these applications differ in size and complexity, they all in-
volve people and computer agents engaging in a series of
interactions that vary the space of possible strategies and
the associated rewards at each round of interaction. We re-
fer to such interactions asdynamic. This paper investigates
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whether reasoning about reciprocity is helpful for computers
that model people’s behavior in dynamic interactions.

In theory, equilibrium strategies for repeated interactions
can be extracted that afford reciprocal qualities (Kreps &
Wilson 1982; Littman & Stone 2005). For example, strate-
gies such as tit-for-tat allow agents to punish, forgive andre-
ward each other in certain class of games such as the prison-
ers’ dilemma. Other models allow agents to maximize their
expected reward over time given their own beliefs about
each other’s decision-making process (Tesauro 2002).

However, computation of game theoretic equilibria be-
comes inherently difficult in dynamic settings, where play-
ers’ strategies and utilities at future rounds of interaction is
unknown. In addition, there is extensive evidence that shows
that human behavior does not adhere to game- and decision-
theoretic assumptions (Camerer 2003). Recent work has
shown that it is possible to learn the social factors that af-
fect people’s play (Galet al. 2004). However, this work has
focused on one-shot interactions. This paper compares such
models with alternative models for dynamic interaction that
explicitly represents people’s reciprocal reasoning.

Our theory formalizes reciprocal behavior as consisting of
two factors: Players’retrospectivebenefit measures the ex-
tent to which they retaliate or reward others’ actions in the
past; players’prospectivebenefit measures agents’ reason-
ing about the ramification of a potential action in the future,
given that others are also reasoning about reciprocal behav-
ior. Players’ retrospective benefit depends on their beliefs
about others’ intentions towards them. Our model explicitly
represents these beliefs in players’ utility functions. This
allows to learn the tradeoff people make between the retro-
spective and prospective benefit associated with particular
actions.

We used a hierarchical model in which the higher level
describes the variation between players in general and the
lower level describes the variation within a specific player.
This captured the fact that people may vary in the degree to
which they punish or reward past behavior. We compared
the performance of models that reason about reciprocal be-
havior with those that learn social factors in one-shot sce-
narios, as well as equilibrium strategies from the coopera-
tive and behavioral game-theoretic literature. Results show
that a model that learned the extent to which people reason
about retrospective and prospective strategies was able pre-



dict people’s behavior better than the models that considered
neither reciprocal factor or just one of them. These results
indicate that modeling reciprocity in humans is essential for
computer players that engage in dynamic interaction with
people.

Interaction Scenario
Our experiments deployed a game called Colored Trails
(CT) (Groszet al. 2004) that explicitly manifests goals,
tasks, and resources in a way that is compelling to people,
yet abstracts away from a complicated underlying domain.
CT is played on a 4x4 board of colored squares with a set of
chips. One square on the board was designated as the goal
square. Each player’s icon was initially located in a random,
non-goal position. Players were issued four colored chips.
To move to an adjacent square required surrendering a chip
in the color of that square. Players have full view of the
board and each others’ chips.

Our version of CT included a one-shot take-it-or-leave-
it negotiation round between two agents that needed to ex-
change resources to achieve their goals. Players are desig-
nated one of two roles:proposerplayers could offer some
subset of their chips to be exchanged with some subset of the
chips of responder players;responderplayers could in turn
accept or reject proposers’ offers. If no offer was made, or if
the offer was declined, then both players were left with their
initial allocation of chips. Players’ performance was deter-
mined by a scoring function that depended on the result of
the negotiation. Players’ roles alternated at each round (CT
is not a zero sum game).

CT is a conceptually simple but strategically complex
game. The number of possible exchanges at each game is
exponential in the joint chip pool of both players. In our
scenario, this amounted to28 = 256 possible exchanges.
Varying the initial chip and board layout allows to capture a
variety of dependency relationships that hold between play-
ers.

A Dynamic Model of Interaction
Each instance in our scenario includes a set of finite rounds
of bilateral interaction. Each round includes a gamegk con-
sisting of a CT board, chip allocations, and players’ initial
positions. The gamegk determines the set of possible ex-
changesEg

k that the proposer can offer. The datum for a
single round is a tupleck = (ei

k, r
j
k) consisting of an ob-

served offerei
k ∈ E

g
k made by proposeri and response

r
j
k ∈ {yes, no} made by responderj.
To capture people’s diverse behavior we use the notion of

types. A type captures a particular way of making a decision,
and there may be several possible types. At each round, the
probability of an action depends on players’ types as well as
on the history of interaction prior to the current round.

Let d = (c1, . . . , cnd
) represent an instance that includes

nd rounds of interaction and letti, tj denote the types for
playersi and j respectively. We assume each instance is
generated by a unique agent pair and that agents alternate
their proposer-responder roles at each round. In general, the
likelihood of each roundk depends on the history of former
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Figure 1: Three rounds of interaction

rounds. Letπi(ck) denote the reward at roundk to i. We
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We illustrate this interaction using Multi-Agent Influence
diagrams (Koller & Milch 2001). A MAID is a directed
acyclic graph containing three kinds of nodes: chance nodes
denoted by ellipses, decision nodes denoted by rectangles,
and utility nodes denoted by diamonds. Each chance node
has an associated conditional probability distribution (CPD).
A utility node has an associated deterministic function from
values of its parents to the real numbers. The parents of a de-
cision node represent information that is known to the deci-
sion maker at the time of making the decision, and are called
informational parents. Each decision and utility node is as-
sociated with a particular agent. A MAID for three rounds
of interaction is shown in Figure 1.1 In general, there is a
high degree of dependency in the network. Each action de-
pends on the type that generated the action as well as on the
entire history of past play.

We attempt to reduce the dependency of the model by
making agents’ actions depend on an unobservedstate. The
state encapsulates all the information for an agent that is
salient for making its decision. Thus, the state informa-
tion should include the types for both agents, the current
round and a function that summarizes the past history of

1For simplicity, we have not included nodes representing games
in this diagram.



play. We selected a function that determined players’ beliefs
about each other’s intentions towards them in the game, sug-
gested by Rabin (1993). For each agent, we define a scalar
calledmerit, denotedmk = (mi, mj) that is given an initial
value of zero at the onset of an instance and is updated by
the agents given the observations at each round. A positive
merit value for agenti implies that agentj believes thati has
positive intentions towardsj, and conversely for a negative
merit value. This belief depends on the relative difference
between the benefit from the proposed offer to agentj and
an action deemed “fair” to agentj. The state at roundk is
thus a tuplesk = (m, t) consisting of agents’ merits and
types. Given an initial states1 and a gamegk we can rewrite
Equation 1 as

(2)

p(d | s1) =
∏nd
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k | gk, sk) · p(rj
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j
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We chose the “fair” action at each round to correspond
with the Nash bargaining strategy, a common solution con-
cept of cooperative game theory that maximizes the prod-
uct of agents’ benefits from any potential exchange. This
concept satisfies several attractive social criteria, suchas
Pareto optimality, beneficial to agents (no player can get less
from not bargaining), and symmetric with respect to agents’
changing roles. If for a given agent the difference in benefit
to the other between its action and the fair action is positive
then the agent has behaved kindly towards the other, and nas-
tily if the difference is negative. Merit is thus an aggregate
measure of players’ kindness at each roundk. We assume
that agents have common knowledge of each others’ merits
and update them in the same way as follows:

mi
k+1(ck) = mk +

π
j
k(ck) − π

j
k(nb)

π
j
k(max) − π

j
k(min)

(3)

where max and min represent the exchanges that incur
maximum and minimum benefit to playerj in roundk. If
i is a proposer the quantityπj(ck) refers to the associated
benefit from exchangeei

k to responderj; if i is a respon-
der the quantityπj(ck) refers to the benefit for proposerj

from exchangeej
k if ri

k is “yes”, and zero otherwise. Each
round of interaction depends only on the state that generated
it. This state-space representations allows us to represent an
instance compactly, as shown in Figure 2.

Credit Assignment
In our model, the total accumulated reward for some action
at statesk in roundk depends on two factors: the immediate
benefit of the action at the gamegk and the ramification of
the action over future rounds given that agents update their
models of each other at each round. We denoteFRi

P (ei
k |

gk, sk) to be the future ramification for proposeri for taking
actionei

k at roundk at statesk. We can now define the total
rewardERi

P for the proposer to be

ERi
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Figure 2: Three rounds of interaction with state representa-
tion

We define the total accumulated rewardERi
R for the respon-

der to be
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The future ramification for proposeri at roundk depends on
the total accumulated reward fori at roundk + 1 in which i
will be playing the role of a responder, andj will be playing
the role of a proposer. The games played and states reached
in future rounds are unknown, but we can sum over the like-
lihood of each possible game and future state and define the
future ramification as
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In a similar fashion, the termFRi
R(ri

k | e
j
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sents the total accumulated reward for the responder at round
k+1, in which the responder and proposer roles are reversed:
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Representing Social Factors
We define the following featuresx = {x1, . . . , x4} repre-
senting social factors for agentsi, j in roundk, that depend
on the current statesk:

Individual Benefit This feature represents the immediate
benefit to agenti from the round(x1 = πi(ck)).

Other’s Benefit This feature represents the immediate ben-
efit to the other agentj from the round(x1 = πj(ck)).

Retrospective BenefitThis feature represents the benefit to
an agent from rewarding and punishing past actions of
the other agent. We define this to be the product of the
other’s benefit and its merit(x3 = πj(ck) ·mj). Players’
retrospective benefit increase when rewarding others that
have positive merit, and when punishing others that have
negative merit.

Prospective BenefitThis feature represents the benefit the
agent expects to receive in the future as a result of tak-
ing its current action. In our terminology this is the future
ramification for the agent(x4 = FRi

p for a proposer or
x4 = FRi

R for a responder). Players’ prospective bene-
fit depends on the consequences of their action in future
rounds, given that players update their beliefs about each
others’ types and intentions.

Using and Learning the Model
A statesk includes a typeti that generates weightswi asso-
ciated with the featuresx. The social utility fori at round
ck is a weighted sum of the feature values given the statesk.

ui(ck | sk) = w
i · x

Note that the social utility depends on the joint actions of
both proposer and responder agents as well as their beliefs
over each other’s merits.

To compute the probabilityp(ei
k | gk, sk) of an exchange

and the probabilityp(ri
k | e

j
k, gk, sk) of a response we use a

soft-max function. The probability of any action depends on
the utility of the action compared to other actions.
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This function captures certain aspects of human behavior:
Its stochasticity makes the likelihood of actions associated
with a high social utility to greater, while still allowing play-
ers to deviate from this principle; the likelihood of choosing
an exchange that incurs a high social utility will increase if
there are few other similar exchanges that incur high utility,
and will decrease if there are many other similar exchanges.

We now wish to learn a mixture model consisting of a dis-
tribution over people’s types, and the weight values for each
type. To this end, we adapt an algorithm proposed by Gal
& Pfeffer (2006) in which gradient descent is used to update

the weight after each observation for each type. The likeli-
hood that typeti generated an instanced can be computed
using Bayes rule.

p(ti | d) ∼= p(d | ti) · p(ti) = p(ti)

∫

p(s1)p(d | s1)ds1

(10)
wherep(d | s1) is given in Equation 2.

We make the degree to which a training example con-
tributes to learning the weights in a network be proportional
to the probability that the model actually generated the data.
To this end, we assign a learning rateαi = α · p(ti | d) that
depends on the likelihood that typeti generatedd, whereα
is a constant less than 1. Taking the derivative of the error
function with respect to the weights, we get the following
update rule at each roundk of instanced for agenti (pro-
poser or responder) and actiona ∈ {ei

k, ri
k}:

w
i = w + αi · (err

i
k)2 · (1 − erri
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Here, the term(xa,∗
k − x

a) denotes the difference between
the features associated with the observed actiona∗

k in the
training set and any possible actionai

k. For the proposer,
when we expanding the error function according to Equa-
tion 8 we get that for any potential offerei

k ∈ E
g
k the error
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erri
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The weight update for the proposer is similar.
We proceed to update the weights for each instance in

training set for every agenti and for every possible in-
stantiation of the states1. In our formalism, this corre-
sponds to summing over the possible typesti. Players’
types are unobserved during training, but after each epoch
computing the new parameters is done using a variant of
the EM algorithm. We compute for each instanced ∈ D
E(Nt|D) =

∑

d∈D p(ti | d, s1) + p(tj | d, s1) and normal-
ize.

To determine the social utility, it is necessary to compute
the future ramification factors of Equation 7 and 6. There
are difficulties associated with this computation. First, it re-
quires combinatorial search in the depth of the number of
rounds. Second, computing the update belief statesk+1 re-
quires to sum over all possible values ofsk.

However, there is structure in our domain that reduces
this computation. First, players’ types do not change be-
tween rounds so they do not depend on the state. Second,
agents’ merits are common knowledge, and can be com-
puted at roundk+1 using Equation 3. The only unobserved
element insk+1 is the type for the other player, and we can
therefore rewrite Equation 5 to be

FR
i
R(ri

k | gk, sk) =
X

tj

p(tj)
`

X

gk+1

X
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k+1

p(ei
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i
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´

wheresk+1 = (ti, tj ,mk+1) is the updated state at round
k + 1 andmk+1 represents the updated merit values. Sim-



ilarly, we can compute the future ramification for the pro-
poser as follows:
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These computations still requires to sum over all possi-
ble games and all possible actions, for a horizon that equals
the number of rounds. The number of possible games is
enormous. To simplify the computation, we sample a small
number of games. Different games are sampled for each in-
stance and each round, but the same sampled games are used
to compare different actions, to make the comparison as fair
as possible.

The number of actions at each game is not so large, typ-
ically about fifty, but since we need to compute future ram-
ifications many times for learning this is also a bottleneck,
so we sample a few actions. However, to get the probabil-
ity of an action, according to Equation 8 we need to know
the utility of all actions, not just the ones we sample. To get
around this, we explicitly compute the future ramification
of a small number of sampled actions. We then fit a linear
function where the independent variable is the merit change
for taking a particular action, and the dependent variable is
the future ramification. We use this function to estimate the
future ramification of actions that are not sampled, and so
compute their utility. The probability of all actions can then
be computed.

In addition, we use dynamic programming to compute
future ramification. This cannot be done directly as Equa-
tions 4 and 5 are written because merit is a continuous vari-
able. So we discretize the merit into a small number of bins,
keeping the number of states small. To simplify things even
further, we make the assumption that the other agent’s merit
does not change in future rounds; only changes to an agent’s
own merit are taken into account. Changes to the other
player’s merit are a second-order effect — they do not af-
fect how the other player responds to your actions, and have
a small effect on how your future actions are perceived. With
these optimizations, it takes about four seconds to compute
future ramifications for a horizon of eight.

Results and Discussion
We performed human subject trials to collect data of people
playing our dynamic CT scenario. There were ten subjects
that generated 54 instances of dynamic interactions. Each
instance consisted of between four and ten rounds of CT
games in which the players alternated proposer-responder
roles at each round. CT games were sampled from a distri-
bution that varied the number of possible negotiation strate-
gies, their associated benefit and the dependency relation-
ships between players, i.e. who needed whom to get to the
goal. A total of 287 games were played.

An initial analysis of the data revealed that players en-
gaged in reciprocal behavior when they interacted with each
other. For example, a significant correlation (r2 = 0.371)
was found between the benefit to the responder from one
round to the next. This shows that if the proposer was nice
to the responder in one round, the responder (who became a
proposer in the next round) rewarded the gesture by making
a nice offer. Similar correlations were apparent across mul-
tiple rounds, suggesting that the effects of reciprocal reason-
ing on people are long lasting.

We learned several computer models of human players.
The model namedno-learningused weights learned from
data collected from single-shot games. Including this model
allowed us to test to what degree behavior from single-shot
games carries over to the dynamic setting. The model named
no-reciplearned only the weights for the individual benefit
and other’s benefit, without accounting for reciprocal behav-
ior. This model has been shown to capture people’s play
in one-shot scenarios (Galet al. 2004). The model named
recip learned all four features, the two non-time-dependent
features and the features representing both retrospectiveand
prospective benefit. The models namedretro and prosp
learned three features: the two non-time-dependent features,
and either the retrospective benefit or the prospective benefit,
respectively. We also compared to two game-theoretic con-
cepts: the Nash Bargaining solution (J.Nash 1950), and the
Fairness Equilibrium (Rabin 1993), which attempts to cap-
ture player’s psychological benefit from rewarding or pun-
ishing others who they think will be nice or nasty to them.
The following table shows the fit-to-data results, all of which
are significant within the 95% confidence interval.

Model Likelihood class class
(Proposer) (Responder)

no-learning 27.17 0.42 0.68
no-recip 26.5 0.46 0.66

recip 24.4 0.50 0.66
Nash B. — 0.42 0.52
Fair Eq. — 0.38 0.42

retro 24.3 0.42 0.72
prosp 24.3 0.51 0.7

The first column shows the negative log likelihood of the
data. Since the Nash bargaining solution and the fairness
equilibrium do not define probability distributions, no
likelihood is shown for them. The likelihoods are fairly
similar to each other because the probability distributionis
relatively flat, because there are a large number of offers
available with similar utility. According to this metric, we
see that all the models that learn reciprocal behavior do
better than theno-recipmodel which does not. Furthermore,
theno-learningmodel does worst, indicating that we cannot
simply reuse the weights learned for a single-shot game.
However there is little difference between the three-feature
models and the four-feature model (the four-feature model
actually doing marginally worse). So there is evidence that
people do employ reciprocal reasoning, and that it is useful
to model this computationally, but according to this metric
this can be captured just as well with a single reciprocal
feature, and either retrospective or prospective benefit will
do just as well.



Looking more closely at the results provides more infor-
mation. The next column, labeled class(Proposer), indicates
the fraction of times that the actual offer made by the pro-
poser was in the top 25% of offers predicted by the model.
For the computer models this meant the top 25% in order
of probability; for the Nash Bargaining solution this meant
the top 25% in order of product of benefits for the proposer
and responder; and for the Fairness Equilibrium this meant
the top 25% in order of total benefit including psychological
benefit. The results for this metric show thatrecipandprosp
perform best, whileretro performs as badly asno-learning
and the game-theoretic models. This provides evidence that
it is prospective benefit that is particularly important. The
final column shows a similar metric for the responder deci-
sion; in this case it is the fraction of time that the model cor-
rectly predicted acceptance or rejection. We see here that the
two game-theoretic equilibria did significantly worse than
the other models, showing that we cannot simply borrow
game-theoretic notions and expect them to work well. There
was little differentiation between the other models, with the
two three-parameter models doing slightly better. Taking all
the metrics into account, we conclude that there is no evi-
dence that people simultaneously reason prospectively and
retrospectively, and of the two temporal features prospective
reasoning are more important.

Conclusion and Future Work
In this paper we have studied the computational modeling
of people’s behavior in dynamic bilateral negotiation sce-
narios. This initial investigation has shown that reasoning
about reciprocal behavior improves the predictive power of
computers that model people. One cannot simply borrow an
approach that worked for one-shot games and expect it to
work well for dynamic interactions. Also, standard equilib-
rium notions from game theory do not work well. We pre-
sented a theory of reciprocity that distinguishes between the
immediate benefit of agents’ actions in the present, the ben-
efit agents gain from rewarding or punishing past behavior,
and the effects of the actions on their future well-being, and
described the relationship between these factors formally.
We provided an algorithm to learn the relative contribution
of these factors on people’s play in a domain that includes
uncertainty over future interactions with a large number of
possible strategies.

In future, we plan to conduct further experiment to see
whether the finding that prospective reasoning is more affec-
tive than prospective reasoning generalizes to environments
that vary the negotiation protocol, game size and other fac-
tors. Also, we will design computer agents that use these
learned models of reciprocal behavior. We envision two
kinds of agents. Emulators will utilize the learned models
to mimic people’s play, either by choosing the option that
has the highest probability according to the model, or else
randomizing according to the distribution specified by the
model. Maximizers will attempt to maximize their expected
utility given their model of how the other agent will play.
These players will need to tailor their model of how people
behave in general to how individual, new people behave in
different circumstances, and update their beliefs about the

other player based on the observed behavior of the other
player. We plan to test these computer players in experi-
ments in which they participate in negotiations with people.
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