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ABSTRACT
In strategic multiagent decision making, it is often the case
that a strategic reasoner must hold beliefs about other agents
and use these beliefs to inform its decision making. The be-
havior thus produced by the reasoner involves an interaction
between the reasoner’s beliefs about other agents and the
reasoner’s own preferences. A significant challenge faced by
model designers, therefore, is how to model such a reasoner’s
behavior so that the reasoner’s preferences and beliefs can
each be identified and distinguished from each other. In
this paper, we introduce a model of strategic reasoning that
allows us to distinguish between the reasoner’s utility func-
tion and the reasoner’s beliefs about another agent’s utility
function as well as the reasoner’s beliefs about how that
agent might interact with yet other agents. We show that
our model is uniquely identifiable. That is, no two different
parameter settings will cause the model to give the same
behavior over all possible inputs. We then illustrate the
performance of our model in a multiagent negotiation game
played by human subjects. We find that our subjects have
slightly incorrect beliefs about other agents in the game.

Categories and Subject Descriptors
I.2.6 [Learning]: Knowledge acquisition; I.6.5 [Model De-
velopment]: Modeling methodologies; J.4 [Social and Be-
havioral Sciences]: Economics

General Terms
Experimentation, Human Factors, Performance, Design

Keywords
Human models, Uncertainty, Reasoning, Negotiation

1. INTRODUCTION
Many multiagent domains involve both human and com-

puter decision makers that are engaged in collaborative or
competitive activities. Examples include online auctions, fi-
nancial trading, scheduling, and computer gaming (online
and video). To construct computer agents that can inter-
act successfully with human participants, we need to under-
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stand several things about human reasoning in multiagent
domains. Behavioral economics [17, 3] has shown that peo-
ple employ social utility functions that deviate from rational
game-theoretic prescription. Learning about the social util-
ities humans use has been shown by Gal et al. [8] to be
beneficial for the design of computer agents. Psychologi-
cal theories of mind explore people’s reasoning about others
[10, 4, 13, 2]; one aspect of a theory of mind concerns beliefs
about others. This aspect of modeling human reasoning for
use in computer agents is left open by Gal et al. [8].

We are interested to investigate beliefs that human rea-
soners hold about other agents. Do people hold beliefs about
another agent’s preferences or intentions, and use these be-
liefs to inform decision making? If so, then what are these
beliefs? Are these beliefs correct? How do the beliefs about
others’ preferences or intentions relate to the preferences or
intentions of the reasoner? Do people believe others to be
the same as themselves? If people use beliefs to reason,
then their behavior is the result of an interaction between
their beliefs about others and their own utility function; can
we distinguish between the two and untangle a person’s be-
liefs from her preferences? For example, the negotiation
experiments of Gal et al. [8] indicate that human players
often make offers that are more generous than necessary to
be accepted. This result may indicate a gap between the
proposer’s beliefs about the responder and the responder’s
actual behavior. Alternatively, the human player may have
a strong preference to be generous. If we are interested to
identify an explanation, we must construct a model such
that we can distinguish the reasoner’s preferences from its
beliefs about another agent. Otherwise, model parameters
will represent some amalgam of these various factors.

In this paper, we use AI techniques to address the above
questions. We introduce a model of strategic human reason-
ing that allows us to distinguish between three factors: the
human’s own utility function, the human’s beliefs about an-
other agent’s utility function, and the human’s beliefs about
how that other agent may interact with yet other agents.
To support our claim that the model allows us to untangle
these factors, we show that the model is uniquely identifi-
able; that is, no two different parameters sets can produce
the same model behavior over all possible inputs. We pro-
vide a learning algorithm for our model and analyze how well
learned models fit data obtained from human-subjects trials
of a multiagent negotiation game. In addition to investigat-
ing our general model, we also examine constrained versions
that correspond to particular belief patterns. For exam-
ple, it may be that a human player believes other agents



to share the same utility function as the player. In another
example, we consider the case where different types of hu-
mans have different personal preferences, but share the same
beliefs about the preferences of other agents. Our analy-
ses provide insight into whether modeling a person’s beliefs
about others’ preferences separately from the person’s own
preferences yields a better model for use in computer agents.

Our work is significantly different from most work in mul-
tiagent systems (MAS) [19, 14]. For example, MAS research
often focuses on environments comprised of only computer
agents; thus, agents tend to be viewed as rational actors
[9]. The bounded-rational agents of [18] do not specifically
address human boundedness. Research on theories of mind
and emotion [16, 11, 1] typically involves no learning at all
or no learning from real human data. Finally, investigations
of theories of mind do not address the construction of com-
puter agents that are to interact with humans.

2. NEGOTIATION GAME
To investigate the role of beliefs about others in human

reasoning, we require certain elements in a multiagent envi-
ronment. First, we require a domain where agents’ prefer-
ences matter for decision making. The domain should pro-
vide the possibility for agents to reason strategically about
each other, and this reasoning may entail the need for be-
liefs. Agents in the domain should be situated [15], such
that behavior requires interaction within and with the en-
vironment; Gal et al. [6] show that situated task activity
elicits stronger concern with social factors such as fairness,
whereas the same underlying game presented in a more ab-
stract payoff-matrix form engenders behavior more in line
with rational Nash equilibrium play. Finally, we require the
domain to be simple enough for modeling and decision mak-
ing to be tractable. The Colored Trails (CT) framework [12]
meets our requirements.

Using the CT framework, we construct a negotiation game
in which players must negotiate with each other to obtain
resources needed to complete a task. The player we are inter-
ested to model is called a proposer ; a proposer formulates an
offer to exchange resources with another player who is called
the responder. The responder may also receive an outside
offer to exchange resources. The responder can accept only
one offer, either the proposer’s or some outside offer, or the
responder can reject all received offers. Our domain can be
viewed as a general model for one-shot negotiation that is
situated in a particular task.

Our CT game is played on a 4x4 board of colored squares;
each square is one of five colors. Each player has a piece on
the board as well as a collection of colored chips that can be
used to move her piece; a player may move her piece to an
adjacent square only if she has a chip of the same color as
the square. After the piece is moved, the chip is discarded by
the player. The board also has a square that is designated
as the goal. The objective of each player is to move her piece
as close as possible to, and preferably onto, the goal square.
We generate initial conditions such that players can usually
improve their ability to approach the goal by trading chips.

Each game proceeds as follows. Each player is randomly
assigned a role in the game (i.e., the proposer, responder,
or the originator of an outside offer) and given a random
assortment of chips. Each player knows the chips that she
possesses and the state of the board (board colors, goal loca-
tion, locations of all player pieces). The proposer also knows

the chips possessed by the responder, but not by any other
player that may make an outside offer; this is a source of
uncertainty in the game. The responder knows the chips
possessed by all other players. The proposer is allowed to
exchange chips only with the responder. Any redistribution
of chips between the proposer and the responder is valid,
including giving away all chips, requesting all chips, or any-
thing in between. A proposal may also leave the chips un-
changed. The space of possible proposals depends upon the
specific chips possessed by the proposer and responder, and
may range in size from approximately forty to four hundred.
The responder then chooses either to accept the proposer’s
offer, accept an outside offer, or decline all offers.

After the responder’s decision is made, the CT system
1) informs the proposer of the outcome, 2) executes any
accepted proposal, and 3) automatically moves all players’
pieces to obtain the maximal possible score for each player,
given the chips possessed after the negotiation. Landing
onto the goal square earns a player 100 points; a player
unable to reach the goal pays a penalty of 25 points for each
square she is away from the goal. Each chip not used for
moving earns a player 10 points.

A number of factors may influence the offer a proposer
ultimately makes. First, a proposer may need certain chips
to improve its utility. But, the responder may also require
certain chips, and these requirements may or may not be
synergistic with the needs of the proposer. Finally, because
the responder can accept no more than one proposal, there
exists a competitive relationship between the proposer and
the outside offer. The behavior of the proposer explores the
tension between fulfilling its own utility function and that of
the responder in the face of unknown competition. We are
interested to explore whether and how the proposer reasons
by using beliefs about the responder’s preferences.

2.1 Example Game
To make our game more concrete, we provide the follow-

ing example. Say that the goal square happens to be blue;
thus, for a player to reach the goal, the player must possess
a blue chip. Next, say that the proposer’s initial position is
one square away from the goal; the proposer possesses four
chips, but the proposer lacks a blue chip. Thus, regardless of
what other chips the proposer has, it makes no sense for the
proposer to use chips to move, since the proposer is already
as close to the goal as it can currently get. Consequently,
the best score the proposer can obtain with the chips it cur-
rently has is 40 − 25 = 15 (10 points for each unused chip
minus the penalty for being one square away). Say that
the responder’s initial position is two squares away from the
goal; the responder also has four chips, and while the re-
sponder has one blue chip, it lacks chips for the squares that
happen to surround the goal square. Thus, the responder is
also already as close to the goal as it can get. The best score
the responder can obtain with the chips it currently has is
40 − 50 = −10.

Let us say that the proposer asks for the responder’s blue
chip in exchange for a chip that will allow the responder to
move one square closer to the goal. If the responder accepts
this offer, then the proposer’s score changes to 30+100 = 130
(three unused chips plus the bonus for landing on the goal
square); this is an increase of 115 points over the best score
obtainable without exchanging chips. The responder’s score
changes to 30−25 = 5 (three unused chips minus the penalty



for being one square away), an increase of 15 points. Thus,
a chip exchange may improve a player’s score even if it does
not allow the player to reach the goal.

3. PLAYER MODELS
We are interested to model the behavior of proposer agents

in our game. In particular, we model the proposer as main-
taining beliefs about how the responder will behave and us-
ing these beliefs to reason about what offer to make. Thus,
our proposer model contains parameters that facilitate rea-
soning about its own preferences as well as other parameters
that facilitate reasoning with beliefs about the responder.
Specifically, the proposer uses its beliefs about the respon-
der to calculate the expected utilities of the possible offers
it can make. In this section, we introduce our general model
for representing a proposer’s beliefs about the responder.

Our models make use of only two simple features that
quantify proposal properties; these features are rather gen-
eral and can be applied to almost any negotiation game.
Let self-benefit (SB) quantify the change in score a player
will receive if a proposal is accepted, and other-benefit (OB)
quantify the change in score the other player will receive
if the proposal is accepted. For example, in the game illus-
trated in Section 2.1, we consider a proposal where, from the
point of view of the proposer, the self-benefit is SB = 115
and other-benefit is OB = 15.

Thus, let each proposal O be represented by a vector of
feature values O = 〈SB, OB〉; let w = 〈wSB, wOB〉 and v =
〈vSB, vOB〉 be vectors of feature weight parameters. The
parameters in w are those which the proposer uses to reason
about its own preferences; the parameters in v are those
which the proposer uses to reason about the responder’s
believed preferences. Preference is expressed by a utility
function U : O → R on the space O of offers, which computes
a linear combination of feature values using a set of weights.

Let φ denote the status-quo, which for the responder rep-
resents the option of rejecting the proposer’s offer as well as
the outside offer, and for the proposer represents the pro-
posal that no resources change hands. Note that U(φ) = 0,
since SB = OB = 0.

Since not all humans will likely share the same preferences
and beliefs about others’ preferences, we use mixture models
to cluster human play into different behavioral types. Let
ρsi be the proportion of proposers of type si. A proposer of
type si uses the utility function Usi with weight vector wsi

to reason about its own preferences:

Usi(O) = wsi
SB · OSB + wsi

OB · OOB. (1)

A proposer of type si may believe that different types of
responders exist. Let ρsi,tj be the proportion of responders
of type {si, tj} that a proposer of type si believes to ex-
ist. A proposer of type si uses the utility function Usi,tj

with weight vector vsi,tj to reason about the preferences it
believes a responder of type {si, tj} has:

Usi,tj (O) = v
si,tj

SB · OSB + v
si,tj

OB · OOB. (2)

This is different from other work [8, 7] because the type
{si, tj} of the responder is embedded in the type si of the
proposer, who is holding a belief about the preferences of
the responder.

Humans select offers non-deterministically; we are prone
to make errors. Further, since our models will not be per-

fect, we care to have our models attach probabilities to dif-
ferent outcomes. To accommodate these factors, we convert
proposal utilities to probabilities of selection with a multi-
nomial logit function. The probability that a responder of
type {si, tj} accepts an offer O is

Responder

Pr(accept|O, φ, {si, tj})=
eU

si,tj (O)

eU
si,tj (O) + eU

si,tj (φ) + ez
. (3)

Since we do not know the outside offer, we cannot compare
with the utility of a specific offer; rather, we use a parameter
z to represent the believed utility of a generic, unknown
outside offer. Taking an expectation over all responder types
{si, tj} that a proposer of type si believes to exist gives

Responder

Pr(accept|O, φ, si)=
X

j

Responder

Pr(accept|O, φ, {si, tj}) ·ρ
si,tj .

(4)

For the proposer, let O = {O1, . . . , OM} be the set of
possible offers, where M varies from game to game due to
the particulars of the game state. The probability that a
proposer of type si will select the m-th proposal in O is a
function of the expected utility of Om:

EU si(Om) = Usi(Om)·
Responder

Pr(accept|Om, φ, si) . (5)

The expected utility to the proposer of an offer O is the
proposer’s utility for O times the probability, according to
the proposer’s beliefs, that the responder will accept O.
With expected utilities in hand, the probability that a pro-
poser of type si will select the m-th proposal in O is

Proposer

Pr(selected = Om|O, si)=
eEU

si (Om)

P

k eEUsi (Ok)
. (6)

Taking an expectation over proposer types gives

Proposer

Pr(selected = Om|O)=
X

i

Proposer

Pr(selected = Om|O, si) ·ρ
si

(7)

The general model’s structure, for two proposer types and
two embedded responder types in each proposer type, is il-
lustrated in Figure 1.

4. HYPOTHESES AND MODEL VARIA-
TIONS

We explore four hypotheses with our model. Crucial to
being able to test these hypotheses is the fact that our mod-
els are identifiable, meaning that no two sets of parameter
settings can yield the same model behaviors over all possible
feature inputs. Section 5 provides our proof of identifiability.

Hypothesis 1 The first hypothesis (H1) is that proposer
beliefs about responders’ preferences are correct, and agree
with the actual observed behavior of human responders. To
explore this possibility, we pre-learn a model of responder
behavior directly from responder data; we regard this re-
sponder model to have the correct values for parameters
vSB, vOB, and z, as well as the correct mixture distribution
over responder types. (In building the responder model, we
determined that a mixture model with two responder types
fits the responder data best.) We then fix these responder
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Figure 1: Structure of general model with two proposer types. Each proposer type has an embedded responder
model (shaded portion) with two types. Model parameters are located at the leaves of the diagram.

parameters in our general model (Figure 1) and learn only
the proposer parameters wsi

SB, wsi
OB, and ρsi for each pro-

poser type si from proposer data.
Hypothesis 2 The second hypothesis (H2) is that pro-

poser beliefs about responders’ preferences are incorrect. To
explore this possibility, we learn all of the parameters of our
general model simultaneously; now, the belief parameters
vSB, vOB, and z are learned from proposer data—not respon-
der data. If we obtain a better fit of proposer data under
this approach than in H1, then proposer beliefs are incor-
rect. Our general model is shown in Figure 1. The leaves
indicate the model parameters. We have two proposer types,
s1 and s2. Each proposer type has an embedded responder
model that is used to calculate expected utility EU. Each
responder model is itself a mixture of two responder types.

Hypothesis 3 The last two hypotheses concern patterns
of belief. Our third hypothesis (H3) is that all proposer
types believe the same thing about responders. Thus, the
parameter value vsi

SB is the same for all proposer types si;
similarly, vsi

OB is the same for all proposer types si, as is zsi .
Despite the shared beliefs, the different proposer types may
still have different utility functions to express their own pref-
erences. The structure of this model is illustrated by Figure
2. We learn all parameters of this model from proposer data.

Hypothesis 4 Our fourth hypothesis (H4) is that people
believe other people are like themselves. Specifically, each
proposer type believes that the responder has the same util-
ity function as itself. In this case, each proposer type si

believes that there exists one responder type {si, t1} and
that vsi,t1

SB = wsi
SB and vsi,t1

OB = wsi
OB. This structure is illus-

trated by Figure 3. We learn all parameters in this model
from proposer data.

5. IDENTIFIABILITY
Both the proposer’s preferences and beliefs about the re-

sponder have an effect on proposer behavior. Can we untan-
gle the effects of one from the other? In other words, are the
subjective beliefs proposers have about responders identifi-
able? It is not obvious that they are. Nevertheless, in this
section, we show that, at least theoretically, preferences can
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Figure 2: Structure of constrained model where dif-
ferent proposer types share beliefs about the respon-
der types. Embedded responder model is shaded.

be distinguished from beliefs in each proposer type si. We
are only interested to show this within one proposer type.
It may be possible that different proposer mixtures produce
the same behavior; nevertheless, in all models, the effects of
the proposer’s preferences, her beliefs about the responder’s
preferences, and her beliefs about the outside offer can be
distinguished. No more than one set of parameter values can
produce the same model behavior over all possible inputs.

To begin, let us use a minimal model with one responder
type, and one generic proposal feature Ox and associated
parameters w, v, and z. Our proof requires only that we
look at the proposer’s expected utility (5), which is

EU (O) = (w · Ox) ·
ev·Ox

ev·Ox + ev·φx + ez

= (w · Ox) ·
1

1 + e−v·Ox + ez−v·Ox
.

(8)
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Figure 3: Structure of constrained model where each
proposer type believes the responder type has the
same preferences as itself. Notice shared weights.

Let us first consider parameter values w > 0, v > 0. Let us
assume that two parameter sets 〈w0, v0, z0〉 and 〈w1, v1, z1〉,
where w0 &= w1, v0 &= v1, or z0 &= z1, produce the same value
in (8) for all feature values Ox. Let h denote the probability
that the responder will accept an offer (3). Since (3) is a
sigmoid function, limOx→∞ h(accept|O, φ) → 1.0. Thus, for
sufficiently large values of Ox, Equation (8) approximates a
linear equation with slope w. Clearly, two different values
of w will create different lines with different slopes for large
Ox. Thus, two parameter sets with different values for w
cannot produce identical behavior in (8) over all Ox; as a
result, it must be that w0 = w1. This reasoning holds even
when we have multiple responder types: for any set of types,
with each type having some non-zero parameter, we can con-
struct an offer that will take the types’ sigmoid functions to
some combination of 0.0 and 1.0 outputs; if a type has all-
zero parameters, then it already outputs a constant. At this
point, the mixture outputs a constant between 0.0 and 1.0.
In either case, the expected utility function becomes a line.

Next, we examine the denominator of the exponent in (8).
Parameters v and z interact in the denominator, but z−v·Ox

is a line. No two pairs of 〈v0, z0〉 and 〈v1, z1〉 can describe
the same line, unless v0 = v1 and z0 = z1; thus, the effects
of parameters v and z can be distinguished from each other.

Because h is a sigmoid function, the parameters v and z
together determine the width of the domain interval over
which h spans the range interval [0 + ε, 1 − ε]. Given dif-
ferent v and z, we will obtain different transitions in the
sigmoid. Therefore, it must also be that v0 = v1 and z0 =
z1. This completes our proof for w, v > 0. For parame-
ter values where one or both of w or v is less than zero,
our reasoning is identical. When v < 0, we instead have
limOx→−∞ h(accept|O, φ) → 1.0. When w < 0, we instead
have a negative slope.

Now let us assume that proposals have multiple features.
For any two vectors w0 and w1, the proposer’s utility func-

tion U can only produce the same values over all possible
offers if the corresponding elements of w0 and w1 are iden-
tical. If w0 and w1 are not identical, then we can construct
an offer with value zero at each feature except for where the
corresponding weights in w0 and w1 are different, and we
will obtain different utilities. Identical reasoning applies to
the responder feature vector v and z.

6. LEARNING
Models are trained by gradient descent. Let g(selected =

O∗|O) be the probability that a proposer model assigns to
the proposal O∗ that was actually selected by a human pro-
poser, given the set of options O. The error function F that
we minimize measures negative log likelihood of the data (N
instances), given a model:

F = −
N

X

n=1

ln
“

g(selected = O∗n|On)
”

. (9)

The derivative of the error function with respect to some
model parameter wsi

l (or v
si,tj

l , zsi,tj , or ρsi,tj ) is

∂F

∂wsi
l

= −
N

X

n=1

∂g

∂wsi
l

g(selected = O∗n|On)
. (10)

Equation (10) requires that we further calculate the par-
tial derivative of function g. The full set of learning equa-
tions is given in [5]. Here, we provide illustrative examples.
The partial derivative of g with respect to the proposer’s
feature weights wsi is

∂g(selected = O∗|O)
∂wsi

l

=

g(selected = O∗|O, si)·
“

W (O∗) −
X

k

W (Ok) · g(selected = Ok|O, si)
”

, (11)

where

W (O) ≡ Ol·
Responder

Pr(accept|O, φ, si) (12)

The partial derivative of g with respect to the proposer’s
beliefs about the responder’s feature weights vsi,tj is

∂g(selected = O∗|O)

∂v
si,tj

l

=

g(selected = O∗|O, si)·
“

Q(O∗) −
X

k

Q(Ok) · g(selected = Ok|O, si)
”

(13)

where

Q(O) ≡

Usi(O)·
Responder

Pr(accept|O, φ, {si, tj}) ·ρ
si,tj ·

“

Ol − Ol·
Responder

Pr(accept|O, φ, {si, tj})
”

(14)

To calculate gradients for the embedded responder param-
eters, we compute Q(O). The first line on the right-hand
side of (14) is the contribution a responder of type {si, tj}
makes to the expected utility of a proposer of type si; the
second line is an adjustment factor equal to the difference,
given the responder type, between the feature value Ol if
accepted and its expected value.



7. RESULTS
We ran two sessions of human-subjects trials to collect

data on how humans play our negotiation game. A to-
tal of 69 subjects were recruited from a large pool (one to
two thousand) maintained by the Harvard Business School
(HBS) for their experimental economics research. Subjects
reflected a diversity in age (min 18, max 58), gender, and
profession. Subjects played 15 rounds of our game, with over
half of their total compensation determined by the scores
they accumulated over the rounds. A subject’s total score
after all rounds played was converted to a dollar amount,
with each point corresponding to one cent, e.g., a score of
1250 points gives $12.50 USD (see Section 2 for details on
how our game is scored). Subjects received a $10 USD show-
up fee. Subjects were free to leave at any point during the
experiment, but received a bonus of 50 score points (i.e.,
$0.50 USD) for each completed round. Average compensa-
tion was $25 USD.

Our experiments took place at the HBS Computer Lab for
Experimental Research. Subjects occupied a single room.
Each subject operated a computer terminal with a privacy
screen. Subjects could not see each other, and were ran-
domly and anonymously matched to interact in each round.
To emphasize that they were playing a sequence of one-shot
games and not an iterated game, subjects performed an un-
related activity between rounds. We collected 536 data in-
stances for training our proposer models; each data instance
represents one proposer decision (along with a corresponding
responder decision).

We used cross-validation to determine how well the model
variations described above fit human proposer data; to speed
training, we initialized all models with weights from our
model of Hypothesis 1, which was trained first on respon-
der data to learn beliefs (i.e., v, z, and ρsi,tj ), then pro-
poser data to learn preferences (i.e., w and ρsi). Results
are summarized in Table 1. Columns labeled 1-6 summarize
model behavior for our four hypotheses along with two other
models, one that behaves randomly and another model that
is reflexive (i.e., does not explicitly maintain beliefs about
the responder). Rows labeled 1-7 present different measure-
ments of model behavior; each row is an average over five
test sets. The models listed in the table are in order of
decreasing negative log likelihood (Row 1).

7.1 Negative Log Likelihood
Row 1 gives the average negative log likelihood (NLL)

of the data, given the model, divided by the size of the
test data; lower numbers indicate better fit. Our learning
process sought to minimize this measurement. The best fit is
obtained under the model constructed to test hypothesis H2,
which asks whether proposers’ beliefs about the responders
are incorrect. Since Hypothesis 2 is investigated by using
the general model, it should fit our data no worse than any
other model, and this is indeed the case.

Next, we have hypotheses H3 and H1, which ask whether
proposers have shared beliefs about responders, and whether
proposers have correct beliefs about responders, respectively.
The model used to investigate Hypothesis 3 (Figure 2) is a
generalization of the model used to investigate H1 (correct
beliefs imply shared beliefs). Thus, the model in Figure 2
should fit our data no worse than the model in H1, which is
also what our data show.

The difference in fit between H2 and H1 is small but has a

p-value of 0.0707 (single-tailed t-test). Thus, there is a sug-
gestion that proposers have slightly incorrect beliefs about
responders. The p-value when comparing the fit of H2 and
H3 is 0.1418. This is weaker evidence that proposers do not
share the same beliefs.

Hypothesis H4 asks whether proposers believe that re-
sponders share the same preferences as themselves. This
hypothesis clearly has the worst fit of our hypotheses and so
appears false. Column 3 of Table 1 gives the performance
of a reflexive model of proposer behavior; this model makes
a decision based only upon the proposal options it has, and
does not explicitly reason about the responder at all. The
reflexive proposer model is a mixture model identical to our
general model, except that it contains none of the parame-
ters that relate to the responder. Interestingly, the model of
hypothesis H4 fits our data worse than the reflexive model.
That is, having a model with poor beliefs can be worse than
a model with no beliefs at all.

Finally, column 1 of Table 1 gives the performance we may
expect from a model that uses a uniform distribution over
all proposals in O, and so corresponds to random guessing.
All of our models clearly fit our data better than random
guessing.

7.2 Other Measurements of Behavior
While our learning procedure was to minimize negative

log likelihood, one problem with this measurement is that
it does not provide a very intuitive reflection of how good
a model is. Rows 2-7 in Table 1 present a number of other
ways to measure the behavior of the models we examine.
Row 2 indicates the highest probability assigned by the mod-
els, on average, to an option O; higher values indicate a more
peaked distribution, which may suggest a higher confidence.
Here, we see that the peaks increase in height as the models
improve their fit to the data with respect to NLL.

Row 3 indicates the proportion of options in O that are
given a higher probability by the model than the option
actually chosen by the human in the data instance; zero
would indicate that the actually chosen option was always
most preferred by the model. This figure is not applicable
to the random model, since each option is equally preferred.
Here, we see that columns 2-5 show improvement in this
measurement corresponding to improved fit with respect to
NLL. The general model (column 6), however, has the third-
best performance in this regard. The p-value obtained when
comparing the proportion measurements of H2 and H3 is
0.2222, giving fairly weak evidence that the model of H3
actually fits better than H2. The difference between H2 and
H1 is not statistically significant.

When the option in O that is most preferred by a model is
different from the option selected by a human, we can further
see how dissimilar these two choices are. Let O∗ be the pro-
posal in O actually made by a human proposer in a game; let
Ô the be proposal in O that is most preferred by a proposer
model. Row 4 of Table 1 gives the mean absolute difference
between O∗

SB and ÔSB; row 5 gives the mean absolute differ-
ence between O∗

OB and ÔOB. These measurements are not
applicable to the random model, since it prefers all options
in O equally. Moving left to right in columns 2-4, we clearly
see the differences in benefits shrink as the models improve
their fit with respect to NLL. The differences in benefits in
columns 4-6 are much smaller in magnitude. The difference
between H2 and H3 with respect to |∆ OB | (row 5) is not



Table 1: Fit of learned models to data test-sets.
1 2 3 4 5 6

Random H4 Reflexive H1 H3 H2
1 Negative Log Likelihood 5.0106 4.4991 4.4220 4.0873 4.0803 4.0698
2 Max Pr 0.0082 0.0334 0.0508 0.1566 0.1610 0.1834
3 Proportion N/A 0.2658 0.2290 0.1922 0.1906 0.1928
4 |∆ SB | N/A 50.2016 48.4586 33.6408 33.1160 33.6422
5 |∆ OB | N/A 66.8316 55.4660 49.0256 49.5312 49.6272
6 E[|∆ SB |] 50.1894 34.0936 27.5698 25.2460 25.5444 25.4482
7 E[|∆ OB |] 45.0558 39.1614 41.6058 42.5416 42.6192 42.3976

statistically significant; with respect to |∆ SB | (row 4) , we
obtain a p-value of 0.1598—a fairly weak indication that the
model in H3 fits better than H2 with respect to |∆ SB |. The
difference between H2 and H1 with respect to |∆ SB | is not
statistically significant; with respect to |∆ OB |, we obtain
a p-value of 0.0724, which suggests that H1 does fit better
than H2 on this measurement.

Rows 6 and 7 of Table 1 give the average expected dif-
ferences in benefits between O∗ and Ô. For these measure-
ments, we use a model’s entire distribution over O to cal-
culate an expectation, rather than look only at the model’s
most preferred option. For E[|∆ SB |] (row 6), we see clear
improvement as we move from column 1 to 4; differences
amongst the last three columns are again small in magni-
tude. With respect to E[|∆ OB |] (row 7), we are surprised
to find that fit becomes worse as we move from column 2 to
4; again columns 4-6 show very similar performance.

7.3 Learned Belief Weights
Table 2 gives some of the actual parameter values learned

in our models. The column labeled ‘H1’ gives the weights
of the correct responder model, which was learned directly
from responder data. This model is a mixture of two re-
sponder types, t1 (rows 1–4) and t2 (rows 5–8). The next
two columns give the weights that concern proposer beliefs
about the responder, from a representative learning run of
our general model. Here, we have two proposer types, s1 and
s2. The column for type s1, for example, gives parameters
representing the beliefs s1 has about the responder. Thus,
the entry in row 1 of this column tells us the probability with
which proposer type s1 expects to encounter a responder of
type {s1, t1}.

Rows 1 and 5 give the probabilities with which the re-
sponder types are believed to be encountered by proposers.
Rows 2 and 6 give the believed SB weights for the responder
types; rows 3 and 7 do the same for OB. Rows 4 and 8
give the believed generic utility for the outside offer for each
responder type.

The most dramatic changes concern the mixture probabil-
ities ρt1 and ρt2 . The correct responder model identifies two
responder types, appearing with frequencies of about 0.67
and 0.33, respectively. After learning the general model
to test hypothesis H2, we find some dramatic changes in
the beliefs. Proposer type s1 believes that the two respon-
der types are almost evenly distributed in the population,
rather than 0.67 and 0.33. Much more extreme is proposer
type s2, which believes that about 97% of responders are of
type t1. The distribution of the two proposer types, accord-
ing to the learned general model, is about ρs1 = 0.74 and
ρs2 = 0.26. Thus, neither proposer type has correct beliefs

about the responder distribution. Beyond the beliefs about
the responder distribution, we also find some of the beliefs
about responder preferences to shift. For example, proposer
type s2 believes that type t1 responders care less about their
own self benefit (row 2) and more about depriving proposers
of benefit (row 3) than type t1 actually does.

Despite the parameter changes shown in Table 2, rows 4–7
of Table 1 show that the average behavior of the learned gen-
eral model (H2) is virtually identical to that of the correct
model (H1). When we contrast these models on a game-by-
game basis, however, we are able to find some substantive
differences in behavior. In particular, we find games for
which the preference orderings of the two models is differ-
ent for certain proposal options. That is, where the correct
model prefers option A over B, the general model prefers B
over A. Such differences between the models in H1 and H2
are certainly more meaningful than the very small changes
in average behavior shown in Table 1.

Table 2: Learned Belief Weights of General Model
(Representative Run).

H1 H2 (Type s1) H2 (Type s2)
1 ρt1 0.6734 0.4913 0.9673
2 vt1

SB 2.5243 2.4262 1.9768
3 vt1

OB -0.1580 -0.2755 -0.3935
4 zt1 -2.1229 -2.1146 -2.1052
5 ρt2 0.3266 0.5087 0.0327
6 vt2

SB 0.2932 0.3397 0.2481
7 vt2

OB -0.5269 -0.4001 -0.4653
8 zt2 1.7508 1.7193 1.7398

7.4 Discussion
We trained our models to minimize negative log likelihood.

Improvements in model performance with respect to NLL
are often, but not always, accompanied by improvements
with respect to other measures of performance. Exceptions
are usually found where differences in NLL are small, but
row 7 of Table 1 gives an example where substantial im-
provements in NLL do not necessarily lead to better fit with
respect to E[|∆ OB |]. An alternative error function that
directly measures differences in benefits might prove more
effective in our domain.

Nevertheless, such ambiguities in the data are small in
extent. Hypothesis H4 is convincingly shown to be false;
thus, proposers do not believe that responders use the same
utility function as themselves. Measurements of NLL and
detailed examination of model behavior in games suggest
that proposers have slightly incorrect beliefs about respon-
der preferences.



Quite aside from the human data obtained in our par-
ticular negotiation game, we have shown how our models
can be used to explore the effects of preferences and beliefs
on human decision making in a multiagent setting. We have
shown that our models are identifiable, meaning that no two
different parameters settings can yield the same model be-
havior over all possible inputs. Our approach gives a way
to detect false beliefs that are reflected in data. The fea-
tures used by our models are quite generic and should easily
work in other negotiation settings. Thus, testing in different
domains may give sharper distinctions between hypotheses
H1, H2, and H3. This is beneficial future work.

Gal et al. [8] studied a simple two-player negotiation game
with human subjects and found that proposers often made
offers to the responder that were more generous than what
the responder would actually have required to accept the of-
fer. Our modeling framework points to a way to understand
the origin of this gap between what the responder requires
and what the proposer gives. Our current models allow us
to consider how the proposer’s decision making is influenced
by the combination of its own preferences and beliefs about
the responder. Thus, it might be the case that the proposer
is generous to the responder because the proposer’s utility
function prefers generous offers. Alternatively, it might be
the case that the proposer erroneously believes that the re-
sponder will not accept offers below a certain threshold. Our
model allows us to disentangle these two influences. A third
possibility, however, is that the proposer is risk averse and
makes a generous offer to avoid uncertainty about whether
the responder will accept. We are now expanding our mod-
eling approach to also take this factor into account.

8. CONCLUSIONS
Human decision making in multiagent scenarios is the

product of several factors, such as individual preference, be-
liefs about others’ preferences, and beliefs about how others
interact with third parties. We have introduced the first
model of human reasoning that allows us to identify and
distinguish these factors; we show that our model is iden-
tifiable. Using a simple multiagent negotiation game, we
conduct human-subjects trials to obtain data about human
reasoning. We then use cross validation to determine how
well each of several variations of our general model fit our
data; each model variation corresponds to a particular hy-
pothesis we investigate. These hypotheses ask whether peo-
ple form correct beliefs about others’ preferences or not, and
whether one’s beliefs relate to one’s preferences in particular
ways. We find that, in our negotiation game, players form
slightly incorrect beliefs about each other’s preferences. Our
results have implications for agent designers who want to
build computer agents that interact with people in strategic
situations.
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