
Modeling how Humans Reason about Others with Partial
Information

Sevan G. Ficici
School of Engineering and Applied Sciences

Harvard University
Cambridge, Massachusetts USA
sevan@eecs.harvard.edu

Avi Pfeffer
School of Engineering and Applied Sciences

Harvard University
Cambridge, Massachusetts USA
avi@eecs.harvard.edu

ABSTRACT
Computer agents participate in many collaborative and com-
petitive multiagent domains in which humans make deci-
sions. For computer agents to interact successfully with
people in such environments, an understanding of human
reasoning is beneficial. In this paper, we investigate the
question of how people reason strategically about others un-
der uncertainty and the implications of this question for
the design of computer agents. Using a situated partial-
information negotiation game, we conduct human-subjects
trials to obtain data on human play. We then construct a
hierarchy of models that explores questions about human
reasoning: Do people explicitly reason about other players
in the game? If so, do people also consider the possible states
of other players for which only partial information is known?
Is it worth trying to capture such reasoning with computer
models and subsequently utilize them in computer agents?
We compare our models on their fit to collected data. We
then construct computer agents that use our models in one
of two ways: emulating human behavior and playing best
response to the model. After building our agents, we deploy
them in further human-subjects trials for evaluation. Our
results indicate that people do reason about other players in
our game and also reason under uncertainty. Better models
are shown to yield more successful computer agents.

Categories and Subject Descriptors
I.2.6 [Learning]: Knowledge acquisition; I.6.5 [Model De-
velopment]: Modeling methodologies; J.4 [Social and Be-
havioral Sciences]: Economics

General Terms
Experimentation, Human Factors, Performance, Design

Keywords
Human models, Uncertainty, Reasoning, Negotiation

1. INTRODUCTION
With increasing frequency, computer agents are partici-

pating in collaborative and competitive multi-agent domains

Cite as: Modeling how Humans Reason about Others with Partial In-
formation, Sevan G. Ficici and Avi Pfeffer, Proc. of 7th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS
2008), Padgham, Parkes, Müller and Parsons (eds.), May, 12-16., 2008,
Estoril, Portugal, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

in which humans reason strategically to make decisions. Ex-
amples include online auctions, financial trading, scheduling,
and computer gaming (online and video). The deployment
of computer agents in such domains requires that the agents
understand something about human behavior so that they
can interact successfully with people; the computer agents
must be sensitive to both how people reason in strategic
settings as well as the social utilities people employ to in-
form their reasoning. To date, these design requirements for
computer agents have received relatively little attention.

Models of human reasoning have been shown to be helpful
for agent design [7]. In their work, Gal et al. [7] used a sit-
uated full-information two-player negotiation game; in this
game, one player proposes an exchange of resources and the
other player responds by accepting or rejecting the proposal.
Gal et al. [7] conducted human-subjects trials and subse-
quently learned a model of the responder’s utility function;
this model was utilized to construct a computer proposer
agent that took human responder behavior into account.
Nevertheless, Gal et al. [7] leave unexplored the questions
of how humans reason strategically and under uncertainty:
the responder of their game reasons only after the proposal
is received, and so requires neither strategic reasoning (that
is, reasoning by one player about what another player might
do) nor reasoning under uncertainty about another player’s
state. Here, we are interested to focus on these two aspects
of human reasoning.

In this paper, we investigate questions about how peo-
ple reason strategically about others under uncertainty and
the implications of these questions for the design of com-
puter agents. For example, is human reasoning reflexive,
where the behavior of other players is accounted for implic-
itly, that is, without explicit consideration of other players’
possible actions or states? Or, do humans somehow try to
reason strategically about other players by consulting mod-
els that they maintain about them? If so, then does such
reasoning also consider the possible states of other players?
And, if either of these possibilities is true, then is it worth
trying to capture such reasoning with computer models and
subsequently utilize them in computer agents?

Our investigation of these questions leads us to a vari-
ety of contributions. We construct a hierarchy of models,
whereby models are differentiated not only by whether they
include strategic reasoning, but also by whom that reason-
ing concerns. We provide learning algorithms for our mod-
els. The human-subjects experiments we conduct provide a
wealth of data which we use to train and test our models
and which can be used for further investigations. We ana-

lyze our models by comparing them on their fit to the data.
We also construct computer agents that use our models in
one of two ways: emulating human behavior and playing
best response to the model. We evaluate our agents by their
performance in further human-subjects trials. Our analy-
ses provide insight into whether and how humans behave
strategically under uncertainty and the issues that surround
engineering computer agents to interact with humans.

We find a model’s ability to predict human behavior de-
pends upon whether we model the human as using reflexive
or strategic reasoning; further, if strategic reasoning is used,
then the model’s performance also depends upon whom we
model the human to be reasoning about. We also find that
the benefits gained from using increasingly sophisticated
models diminish, while the computational costs of such mod-
els increase. Surprisingly, we find that emulating human
behavior is better than playing best response to a model.

While many fields relate to the goal of creating computer
agents that take human strategic thinking into account, none
have yet placed a spotlight on this goal. For example, clas-
sical game theory [4] precludes modeling agents as anything
other than rational actors, severely restricting the types of
reasoning we can capture. Further, the rationality assump-
tion of classical game theory is well known to be violated in
many real-world domains. In recognition of the fact that hu-
man decision making often deviates from full rationality, the
field of behavioral economics [15, 2] seeks to explain the gap
between actual human decision-making and that of classical
game theory’s homo economicus. Nevertheless, the decision-
making domains studied in behavioral economics are very
abstract and lack situatedness; being situated entails inter-
action with and within an environment [12]. Further, be-
havioral economics does not concern itself with engineering
computational agents that can interact successfully with hu-
man decision makers.

The field of multi-agent systems (MAS) [18, 11] is con-
cerned with engineering computer agents that operate and
interact in environments containing other agents. Neverthe-
less, much MAS research focuses on environments comprised
of only computer agents, and so agents tend to be viewed
as rational actors; this assumption simplifies the task of re-
cursive modeling [8], where an agent models another agent
as an entity that itself models other agents. Recursive mod-
els involving bounded-rational agents are also examined in
MAS [17], but such models are not generally intended to
capture the peculiarities of bounded rationality in human
reasoning. Research on theories of mind and emotion [16,
13, 9, 1] typically involves no learning at all or no learning
from real human data; the models used in such work are of-
ten used to generate simulations of behavior. Contrastingly,
our model parameters are learned by training the model on
human data; our computer agents use our models to inter-
act with people. Thus, the enterprise of modeling strategic
human decision-making for the purpose of engineering com-
puter agents that are sensitive to human behavior stands
apart from most MAS research.

2. THREE-PLAYERNEGOTIATIONGAME
We require an environment that is appropriate for investi-

gating how humans reason about others under uncertainty.
The environment must be simple enough for analysis and
agent engineering to be tractable, yet rich enough to reflect
salient features of the real world. We desire an environment

that is situated, can provide partial information, and pro-
motes reasoning about other players. The Colored Trails
(CT) framework [10] meets our requirements.

CT is a highly configurable, situated multi-agent task en-
vironment that can be played by humans and computer
agents. CT captures the important high-level features of
decision-making found in many real-world environments; CT
is sufficiently abstract to focus on high-level features, yet is
simultaneously grounded in a situated task domain. The
situated task activities presented by the CT environment
distinguish CT from the games often used in behavioral
economics, which tend to present highly abstract decision-
making scenarios. Gal et al. [5] demonstrate a framing effect
in which a game presented as a situated task activity elic-
its stronger concern with social factors such as fairness; the
same underlying game presented in a more abstract payoff
matrix form engenders behavior more in line with rational
Nash equilibrium play. These results demonstrate the im-
portance of eschewing highly abstract games in favor of sit-
uated activity if we are interested to learn about how people
reason in real-world settings.

Using the CT environment, we construct a three-player
partial-information negotiation game. Our game is played
on a 4x4 board of colored squares; each square is one of five
colors. Each of the three players has a piece on the board as
well as a collection of four to eight colored chips (175 possible
chip combinations) that can be used to move her piece; to
move her piece to an adjacent square, a player must turn in
a chip of the same color as the square. The objective of each
player is to maximize her score by moving her piece as close
as possible to, and preferably onto, a goal square while using
as few chips as possible. We generate initial conditions such
that players can usually improve their ability to approach
the goal by trading chips.

Each game proceeds as follows. Each player is randomly
assigned to one of the three roles in the game, denoted pro-
poser 1, proposer 2, and responder. Each player knows the
state of the board (board colors, goal location, locations of
all player pieces) and the chips that she possesses. Proposers
also know the chips possessed by the responder, but not by
each other; this is the source of uncertainty in the game. The
responder knows the chips possessed by both proposers. The
proposers are allowed to exchange chips with the responder,
but not each other. The proposers simultaneously formulate
their proposals to exchange chips and submit them to the re-
sponder; any redistribution of chips between a proposer and
the responder is valid. A proposal may also leave the chips
unchanged. The responder then chooses to accept no more
than one of the two proposals, or declines them both. After
the responder’s decision is made, the CT system 1) informs
the proposers of the outcome, 2) executes any accepted pro-
posal, and 3) automatically moves all three players’ pieces
to obtain the maximal possible score for each player, given
the chips possessed after the negotiation. Landing onto the
goal square earns a player 100 points; a player unable to
reach the goal pays a penalty of 25 points for each square
she is away from the goal. Each chip not used by a player
for moving earns the player 10 points.

A number of factors may influence the offer a proposer
ultimately makes. First, a proposer may need certain chips
to improve its utility. But, the responder may also require
certain chips, and these requirements may or may not be
synergistic with the needs of the proposer. In addition,

because the responder can accept no more than one pro-
posal, there exists a competitive relationship between the
proposers. Therefore, a proposer may want to reason about
what the other proposer may offer. Since proposers have
partial information about each other (they know each other’s
location on the board, but do not know about each other’s
chips), reasoning under uncertainty is required. The behav-
ior of a proposer explores the tension between fulfilling its
own utility function and that of the responder in the face of
unknown competition.

3. PLAYER MODELS
Our goal in this paper is to build computer agents that in-

teract successfully with humans. Towards this end, we con-
struct several models of how humans reason in our game. By
examining the performance of a variety of models, we hope
to identify prominent features of human reasoning and engi-
neer effective computer agents. We concentrate on modeling
the proposers in our game, since they have the most inter-
esting decision-making task—our game invites proposers to
employ strategic reasoning under uncertainty. Nevertheless,
most of our proposer models will require models of the re-
sponder to operate, and so we construct responder models
as well. Our player models fall into two broad categories:
reflexive and strategic.

3.1 Reflexive Models
Our most basic models, the reflexive models, are elabo-

rations of the architecture used in [7, 6]. All of our models
(reflexive and strategic) make use of only three simple fea-
tures that quantify proposal properties; these features are
rather general and can be applied to almost any negotiation
game. Though our game involves three players, each pro-
posal specifies a pair-wise interaction between two players.
Let self-benefit (SB) quantify the change in score a player
will receive if a proposal is accepted, and other-benefit (OB)
quantify the change in score the other player will receive if
the proposal is accepted. Other features related to benefits
were investigated with cross validation, but were found not
to improve our models. In particular, we considered cat-
egorical discretizations of SB and OB to indicate whether
benefit is positive, negative, or zero; these were believed
to be useful to express “rational” play. We also considered
two features that addressed the fairness of a proposal, one
that corresponds to the Nash bargaining concept [14] and
another that considers the context of alternative proposals
that could have been made [3].

Given the construction of our negotiation game, a pro-
poser may have two or more different chip-exchange propos-
als that she could make that would each yield the same set
of benefit values if accepted; such proposals are thus equiv-
alent with respect to our models. Indeed, the set of possible
proposals that a proposer may make can be divided into
many equivalence classes, with each class containing several
possible proposals. All of our models operate by scoring pro-
posal classes, not all individual proposals; more precisely,
each class is represented by one member—called an exem-
plar—of the class, and the model scores that member. The
probability that an equivalence class is selected may depend
upon the number of proposals in the class. For example, it
is plausible that, all else being equal, a class with more pro-
posals in it will have more chance of being selected. Thus,
the third feature used by our proposer models is the class

size (CS) of an exemplar proposal. We have found that
proposer models that include the CS feature perform much
better than those without it.

Let each proposal O = 〈OSB, OOB, OCS〉 be represented by
a vector of feature values; let w = 〈wSB, wOB, wCS〉 be the
vector of corresponding feature weight parameters. Let φ
denote the status-quo, which for the proposer represents the
proposal that no chips change hands, and for the responder
represents the option of rejecting both offers. Let U : O → R

be a linear utility function that maps the space of offers O

to the reals R. Our initial definition of our utility function
is

U(O) = wSB · OSB + wOB · OOB. (1)

Human behavior varies: people have different utility func-
tions. Thus, we use mixture models to cluster human play
into different behavioral types. We have T types; an indi-
vidual of type ti uses utility function U ti with weight vector
wti . Let ρti be the proportion of individuals of type ti.

Humans also select offers non-deterministically; we are
prone to make errors. Further, since our models will not be
perfect, we care to have our models attach probabilities to
different outcomes. To accommodate these points, we use a
multinomial logit (soft-max) function to obtain a probability
distribution over a decision maker’s options. Let O be a set
of options to choose from. The probability that an individual
of type ti will select the m-th proposal in O is

Pr(selected = Om|O, ti) =
eUti (Om) · (Om

CS)wCS

K
. (2)

The denominator K is a normalization constant so that
we obtain probabilities. The numerator is the product of
two terms. The first term belongs to the multinomial logit
function, which gives the soft-max behavior over our utility
function. The second term models how the class size of Om

may influence the probability of the proposal being selected.
When wCS = 0, the player is modeled to be indifferent with
respect to class size. When wCS > 0, the player is modeled to
be more likely to select proposals belonging to larger classes.
When wCS < 0, the player is modeled to be more likely to
select proposals belonging to smaller classes. Conveniently,
the product of these two terms is mathematically identical
to moving the second term into our function U as follows:

U(O) = wSB · OSB + wOB · OOB + wCS · ln(OCS). (3)

This second version of function U captures all three of
our proposal features and simplifies our learning algorithms
(described below). Though the class-size feature does not
pertain to benefits in score, it remains that proposals giving
higher values of U are more likely to be selected, according
to the model. The final form of our reflexive model is thus

Pr(selected = Om|O, ti) =
eUti (Om)

P

k eUti (Ok)
. (4)

Taking an expectation over all behavioral types gives

Pr(selected = Om|O) =
X

i

Pr(selected = Om|O, ti)ρ
ti .

(5)

3.1.1 Responder Model R

A reflexive model of player behavior assumes that, in the
decision making process, the player reasons explicitly about

the choices she has, but not about other players. Such an
assumption is clearly appropriate for modeling the respon-
der of our game, since the responder’s decision making re-
quires neither strategic thinking nor reasoning under uncer-
tainty; the responder simply reacts to the decisions that are
made by the proposers. The responder has three choices
O = {O, O, φ}, where O and O are the two proposer offers;
φ is the null offer, which the responder selects if it cares
for neither proposer offer. Since it has only three choices,
the notion of class size is not particularly meaningful to the
responder; we define each of the responder’s three choices
to have a class size of one. Our model of responder behav-
ior is a mixture model precisely of the form described by
Equation (5); the parameters wti

SB and wti

OB are easily in-
terpreted to represent the responder’s utility function. We
denote our reflexive responder model R{}; the empty curly
braces indicate a reflexive model.

3.1.2 Proposer Model P{}

Our simplest model of proposer behavior, denoted P{}, is
also reflexive; this model assumes that a proposer does not
explicitly reason about the responder and other proposer,
even though such reasoning is meaningful in our game. Here,
we define O = {O1 . . . OM} to be the set of equivalence class
exemplars, where M is the number of proposal classes that
exist given the game state. In practice, a proposer may have
on the order of 40–60 classes, with each class containing 1–25
equivalent chip-exchange proposals.

Like the responder model, the reflexive proposer model is
described by Equation (5), and wti

SB, wti

OB, and wti

CS are the
model’s parameters. Unlike the responder model, however,
the benefit weights are not so easily interpreted to represent
the proposer’s utility function. This is because, to the extent
that a proposer implicitly reasons about other players, model
training will cause the weights to represent, as best they can,
some amalgam of the proposer’s utility function and implicit
reasoning process.

3.2 Strategic Models
The reflexive models explicitly reason about the options

they have, but not about other players in the game. Our
game’s structure makes a reflexive model appropriate for
the responder; but, it is possible that a reflexive model of
proposer behavior can be improved upon. We introduce new
models of proposer behavior that use strategic reasoning.

3.2.1 Proposer Model P{R−} and Responder R−

More sophisticated than P{}, we can model a proposer
as reasoning explicitly about the responder, but still not
the other proposer. The existence of the other proposer is
acknowledged, but the partial information about the other
proposer that the game provides is ignored. Unfortunately,
without explicit reasoning about the other proposer, we can-
not utilize our responder model R, because it requires that
we specify both proposers’ offers. To address this problem,
we construct a modified responder model R− that does not
require two proposer offers. Our new proposer model then
utilizes this modified responder model to reason about the
responder, specifically about how likely the proposer’s offers
are to be accepted by the responder.

The modified responder model R− accepts two known
choices O = {O, φ} as input and represents the unknown
O with a fixed “generic” proposal that has utility vti (vti is

a model parameter in addition to feature weights wti):

R−

Pr(selected = O|O, φ, ti)=
eUti (O)

evti + eUti (φ) + eUti (O)
, (6)

where vti is the generic utility given by responder type ti

to the unknown proposal O.
We denote our first strategic proposer model P{R−}, to

indicate that the pre-learned responder model R− is embed-
ded in the proposer model. The parameters to be learned
in P{R−} are the proposer’s three utility function weights
wSB, wOB, and wCS. Proposer model P{R−} uses R− to
reason about how the responder might react to possible of-
fers. We assume players are maximizing social utility rela-
tive to their models of other agents. Here, P{R−} uses R−

to compute expected utility EU , which is the utility of an
offer if accepted times the probability of it being accepted by
the responder; out of convenience, we choose to ignore the
case where the responder rejects an offer, since the realized
benefits (i.e., SB and OB) from a rejected offer are zero.

EU ti(O) = U ti(O) ·
R−

Pr(selected = O|O, φ) (7)

Just as with our reflexive models, we assume that human
behavior is noisy. Thus, we convert our expected utilities
to probabilities using the multinomial logistic function. The
probability of model P{R−} selecting offer Om ∈ O is thus

Pr(selected = Om|O, ti) =
eEU

ti (Om)

P

k eEUti (Ok)
. (8)

3.2.2 Level-N Proposer Models
Our next model of proposer behavior asserts that a pro-

poser explicitly reasons about the responder and other pro-
poser; this model takes into account the partial information
available about the other proposer to reason about what
that proposer might offer and how its offers might affect
the responder’s decision. To perform such reasoning, the
proposer model must itself utilize models of the responder
and other proposer. One such proposer model is P{R,P{}}.
This model embeds our reflexive model of responder behav-
ior R; it also models the other proposer as being reflexive.
Another such proposer model is P{R, P{R−}}, which mod-
els the other proposer as reasoning about the responder but
not the first proposer. We say P{R, P{}} and P{R, P{R−}}
are level-one models because they model the other proposer;
the models of proposer behavior embedded in the level-one
models do not model the other proposer (P{R−} only mod-
els the responder), and so are level-zero proposer models.
As before, the embedded models are pre-learned, and so do
not contribute any new parameters to the level-one mod-
els. The parameters of a level-one model remain the three
weights wSB, wOB, and wCS.

A level-two proposer model is more sophisticated than a
level-one model; it states that a proposer (for clarity named
P1) reasons about both the responder and other proposer
(for clarity named P2), and further states that P1 believes
that P2 itself reasons about P1. In the level-two model
P{R, P{R, P{}}}, P1 believes that P2 models P1 as being
reflexive; in level-two model P{R, P{R, P{R−}}}, P1 be-
lieves that P2 models P1 as reasoning about the responder,
but not P2. The parameters of a level-two model are the
same three weights as in level one. In principle, we can cre-

ate a level-N proposer model by recursively embedding a
pre-learned level-(N − 1) model.

The expected utility EU (O) of an offer O to a level-N
model (say, P{R{}, P{N − 1}}) is

EU (O) =

X

C∈C

X

O∈O|C

Pr(C) ·
P{N−1}

Pr(selected = O|O) ·

R

Pr(selected = O|O, O, φ) ·U (O). (9)

Equation (9) operates as follows. We consider the set C
of all possible chipsets that the other proposer might have.
For each such chipset C ∈ C, we consider all possible offers
O that the other proposer could make. To calculate our ex-
pected utility for offer O, we need to consider several factors.
First is the probability that the other proposer has a certain
chipset C. Then, given C, we use our level N − 1 model of
the other proposer to estimate the probability that it will
make offer O. We next use our model of the responder to
estimate the probability that it will accept our proposal O
over O and φ. The product of these probabilities times our
utility for O gives our expected utility for O. The expected
utilities for all the offers in O are then plugged into the soft-
max equation (8) to obtain a probability distribution over
offers for the level-N model.

3.3 Emulating and Best-Response Agents
We utilize the models described above in two ways to con-

struct computer agents that play proposers in our game.
Our first approach uses a proposer model to emulate the be-
havior of human proposers; the computer agent queries the
model to learn which proposal in O, according to the model,
a human is most likely to make, and makes that proposal.
In our second approach, the computer agent uses a proposer
model along with responder model R to form a best response
(BR) to the expected behavior of the other proposer; the
agent strategizes to maximize its expected benefit. When
the BR computer agent uses a level-N proposer model, the
agent employs a pattern of reasoning that is identical to a
level-N +1 proposer model, except that the BR agent’s util-
ity function is entirely selfish: wSB > 0, wOB = 0, wCS = 0.

4. LEARNING
Models are trained by gradient descent. Let g(selected =

O∗|O) be the probability that a model assigns to the pro-
posal O∗ that was actually selected by a human player, given
the set of options O. The error function F that we minimize
measures negative log likelihood of the data (containing D
decision instances), given a model:

F = −
D

X

d=1

ln(g(selected = O∗d|Od)). (10)

The derivative of the error function with respect to some
model parameter wti

l (or vti in R−) is

∂F

∂wti

l

= −
D

X

d=1

∂g

∂w
ti
l

g(selected = O∗d|Od)
. (11)

Let α be our learning rate. The weight update equation
for some model parameter wti

l is

wti

l ← wti

l − α ·
∂F

∂wti

l

. (12)

To update the probability ρti of type ti in the mixture,
we multiply by the negative of the gradient, which turns out
to be equivalent to using Bayes’ rule:

ρti ←−
∂F

∂ρti

· ρti

=
D

X

d=1

g(selected = O∗d|Od, ti) · ρ
ti

g(selected = O∗d|Od)
.

(13)

Equation (11) requires that we further calculate the par-
tial derivative of function g, which represents the behavior
of our model. Though g varies with each model, we find that
the derivative of g has a similar structure over all models.
The partial derivative of g with respect to some parameter
wti

l for our reflexive models (and R−) is:

∂g(O∗|O, ti)

∂wti

l

= g(O∗|O, ti)
“

O∗
l −

X

k

Ok
l ·g(Ok|O, ti)

”

(14)

The partial derivative of g with respect to vti in R− is:

∂g(O∗|O, ti)
∂vti

= −
eUti (O∗) · evti

“

evti +
P

k eUti (Ok)
”2 (15)

The partial derivative of g with respect to some parameter
wti

l for model P{R−} is:

∂g(O∗|O, ti)

∂wti

l

= g(O∗|O, ti)
“

O∗
l ·

R−

Pr(O∗|O) −

X

k

Ok
l · g(Ok|O, ti)·

R−

Pr(Ok|O)
”

(16)

The partial derivative of g with respect to some parameter
wti

l for a level-N model is:

∂g(O∗|O, ti)

∂wti

l

= g(O∗|O, ti)
“

O∗
l · Z(O∗)−

X

k

Ok
l · Z(Ok) · g(Ok|O, ti)

”

, (17)

where

Z(O) =
X

C∈C

X

O∈O|C

Pr(C) ·
P{N−1}

Pr(selected = O|O) ·

R

Pr(selected = O|O, O, φ) . (18)

Note that using Equation (17) entails the calculations per-
formed in (9). For higher level models, this is recursive,
making the cost of a level-N model grow exponentially with
N . Thus, only small N are feasible; nevertheless, we do not
expect human reasoning to correspond to large N .

5. HUMAN-SUBJECTS TRIALS
We recruited 69 human subjects to play our negotiation

game for 15 rounds; over half of their total compensation was
determined by the scores they accumulated over the rounds.

Subjects were randomly matched in each round. To empha-
size that they were playing a sequence of one-shot games
and not an iterated game, subjects performed an unrelated
activity between rounds. We obtained a total of 268 games
in which all three players were human subjects. Another
221 games involved a human responder deciding between
two hand-crafted offers; the hand-crafted offers are not used
to train proposer models.

Using cross validation, we determined that our models
of responder behavior best fit the data with two types; we
then used two types for our proposer models, as well. We
trained two responder models R and R−, two level-zero pro-
poser models P{} and P{R−}, and the level-one proposer
model P{R, P{R−}}. We constructed six computer pro-
poser agents from our three proposer models. Three agents
were emulators, using proposer models P{}, P{R−}, and
P{R, P{R−}}. The other three agents played a best re-
sponse to our three proposer models.

We recruited an additional 59 human subjects to test the
performance of our models and agents. We selected initial
game states that caused our models and agents to behave
differently in order to magnify differences in performance.
Each game state was used seven times. In one copy, all
players were human. In the other six copies, proposer 1 was
one of our agents, and the other two players were human.
This allows us to compare the performance of the different
agents on the same game states.

6. RESULTS

6.1 Learned Models
In this section, we examine how well our models fit our

data from a number of perspectives. The top half of Table
1 summarizes model fit with respect to a hold-out data set
that comes from the same cohort of subjects used to generate
our training data. Each column reports performance of one
of our models; the column labeled ‘Random’ gives figures for
random guessing. The figures in each row are averages over
the entire data set.

The first row gives the negative log likelihood (NLL) of
the data, given a model; lower values indicate better fit.
Our models were trained to minimize NLL. All of our mod-
els outperform random guessing, and the figures improve
as our models become more complex. To speed learning of
the level-one proposer model P{R,P{R−}}, we initialized
its parameters wSB, wOB, and wCS with the utility func-
tion weights of the level-zero model P{R−}. We found that
simply transposing these weight values from P{R−} to the
level-one architecture alone gave marked improvement; in-
deed, subsequent learning was unable to further improve
the level-one model. The improvement in NLL is statisti-
cally significant as we move from P{} to P{R−}, and from
P{R−} to P{R, P{R−}} (p < 0.012 and p < 0.014, re-
spectively, using the sign-rank test); the difference between
P{R, P{R−}} and P{R,P{R, P{R−}}} is not statistically
significant. The second row gives mean squared error. All
differences are statistically significant (all p < 0.0054) except
for that between P{R, P{R−}} and P{R, P{R, P{R−}}}.

The third row indicates for each model the highest proba-
bility given to an option O ∈ O; this indicates how peaked a
distribution the model produces. The strategic models are
more peaked, suggesting a higher confidence. The fourth
row indicates the proportion of options in O that are given

a higher probability by the model than the option actually
chosen by the human in the data instance; zero would indi-
cate that the actually chosen option was always most pre-
ferred by the model.

Even if the option most preferred by a model is different
from the option selected by a human, the model’s choice
might still be quite similar to the human’s. Arguably, a di-
rect comparison between human and model proposals is the
best way to ascertain the fidelity of our models. We measure
similarity between two proposals by their benefit structures.
Let O∗ be the proposal actually made by a human proposer
in a game; let Ô the be proposal most preferred by a pro-
poser model in a game. The average difference in benefit
between Ô and O∗ is given in rows 5 and 8 of Table 1 for
self-benefit (∆ SB) and other-benefit (∆OB), respectively; a
positive number indicates that Ô gives a higher benefit than
O∗. The average delta in SB, where ‘self’ is the proposer,
shrinks as the models become more complex; these changes
are statistically significant: p < 7e − 09 (t-test) from P{}
to P{R−}, and p < 0.026 from P{R−} to P{R, P{R−}}.
This pattern is not found for OB. Nevertheless, examining
the distributions of benefit deltas between Ô and O∗ over
our hold-out data set, we see that the ∆OB distribution
for model P{} is multimodal; the most common value for
∆OB is approximately −50. In contrast, the distributions
for the strategic models are more unimodal, and the most
common values for ∆OB are near zero. In this sense, the
most preferred proposals of the strategic models are better
approximations of human behavior.

Rows 6 and 9 give the mean absolute differences between
the benefit structures of Ô and O∗. Fit improves as the mod-
els become more complex. The improvement from model
P{} to P{R−} is significant: p < 1.6e − 04 (sign-rank test)
for SB and p < 0.028 for OB; the improvement from P{R−}
to P{R, P{R−}} is weaker: p < 0.24 for SB and p < 0.2 for
OB. Rows 7 and 10 present the average expected absolute
difference between the benefit structures; these expectations
are calculated from the model’s probability distribution over
all proposals in O. Here, the improvement from model P{}
to P{R−} is statistically weak (p < 0.39 for SB and p < 0.26
for OB); the improvement from P{R−} to P{R, P{R−}},
however, is significant (p < 0.002 for SB and p < 0.025
for OB). Thus, the improvement from P{} to P{R−} is
stronger when we are concerned with the most likely offer
than when we care about the entire distribution; the oppo-
site is the case when we go from P{R−} to P{R, P{R−}}. In
any case, the totality of our measurements suggest that our
models improve as they become more complex. The right-
most column of Table 1 gives data for the level-two proposer
model P{R, P{R, P{R−}}}. Due to the excessive compu-
tational cost of training a level-two model, we borrow the
parameter weights from our level-zero model P{R−}. Mov-
ing the weights from level-zero to the level-two architecture
also gave a marked improvement over level zero. In several
measurements (rows 3, 4, 5, and 8) the level-two model gives
the best results; row 6 shows the level-two model to perform
worse than P{R−}. Overall, the level-two model does not
appear to be better than the level-one model; further, the
level-two models require much more computer time to op-
erate. The bottom half of Table 1 presents measurements
on a second test set, generated from a cohort of subjects
that were not used to obtain training data. More complex
models generally perform better.

Table 1: Fit of learned models to data test-sets.
Random P{} P{R−} P{R,P{R−}} P{R, P{R,P{R−}}}
Subject Cohort A (108 Data Points)

1 Negative Log Likelihood 3.728 3.0023 2.8401 2.7469 2.7544
2 Mean Squared Error 0.9474 0.8647 0.8307 0.8079 0.8083
3 Max Probability 0.027 0.165 0.225 0.225 0.228
4 Rank N/A 0.165 0.140 0.133 0.133
5 ∆ SB N/A 44.1 13.8 9.5 2.0374
6 |∆ SB | N/A 49.537 33.889 31.759 34.120
7 E[|∆ SB |] 55.205 29.972 28.427 26.705 26.802
8 ∆OB N/A -10.6 13.2 19.2 -10.095
9 |∆OB | N/A 56.898 48.056 45.000 45.787

10 E[|∆OB |] 49.782 44.389 40.156 38.816 38.866
Subject Cohort B (120 Data Points)

11 Negative Log Likelihood 3.6905 3.0204 2.9255 2.9059 2.9005
12 Mean Squared Error 0.9445 0.8651 0.8327 0.8137 0.8139
13 Max Probability 0.028 0.169 0.190 0.213 0.214
14 Rank N/A 0.169 0.206 0.196 0.197
15 ∆ SB N/A 60.1 22.5 10.9 8.6531
16 |∆ SB | N/A 66.333 42.333 38.792 38.875
17 E[|∆ SB |] 46.556 31.686 28.686 27.741 27.797
18 ∆OB N/A -41.5 -11.5 6.3 -22.1217
19 |∆OB | N/A 57.792 47.958 35.583 35.667
20 E[|∆OB |] 43.319 34.683 39.633 36.303 36.540

6.2 Agent Performance
Using models P{}, P{R−}, and P{R, P{R−}}, we con-

struct six computer agents to play the role of proposer 1.
Each model is used to build an emulator agent and a best
response (BR) agent. We then deploy these computer agents
in follow-up human-subjects trials to test their performance.
These trials are comprised of seven parallel games that each
share the same initial game state. Each of the seven games
has a different agent playing proposer 1: our six computer
agents and one human. The responder and proposer 2 are
human players. To make the most of our follow-up trials, we
use initial game states (which specify board colors, chip dis-
tributions, and locations of the goal and player pieces) that
cause at least the three emulators to make different propos-
als (often the BR agents make different offers, as well).

Table 2 summarizes the performance of our agents in the
follow-up sessions. Each column of data corresponds to one
of the seven agent types playing the role of proposer 1 (hu-
man, three emulator agents, and three BR agents). Row 1
indicates the expected number of offers made by an agent
that were accepted by the responder. Note that the values in
these rows are not integers. When two or more of the players
playing the role of proposer 1 make the same offer, it is often
the case that the responders in the respective games make
different decisions; some responders accept the offer made
by proposer 1, while others reject it. In such situations, we
average the outcome over all players in the role of proposer
1 that make the same offer. Row 2 gives the expected total
benefit to the player in the role of proposer 1. Row 3 gives
the expected total benefit earned by the responder over all
the offers it accepts from the agent playing proposer 1.

The performance of the emulator agents improves as they
use models that better fit our human data. Further, the
worst and best emulator agents were the worst and best
of the entire set of players in the role of proposer 1. The
worst performance was obtained from the emulator agent

using model P{}; this agent had by far the fewest offers ac-
cepted, earned the least total benefit, and also provided the
least total benefit to the responder. The best performance
came from the emulator using model P{R, P{R−}}; this
agent had the most offers accepted (over half—25 offers in
45 games), obtained the greatest total benefit, and provided
the most benefit to the responder. Note also that our best
emulator’s performance closely matches that of humans who
played the role of proposer 1.

The difference in performance amongst our best-response
agents is much smaller. Our worst model, P{}, produced the
weakest BR agent. This BR agent viewed the other proposer
as being reflexive. In contrast, when the BR agent views
the other proposer as being strategic, performance improves.
The two BR agents using models P{R−} and P{R, P{R−}}
perform nearly the same. These two BR agents have fewer
accepted offers than the human players, yet manage to earn
nearly as much total benefit for themselves; at the same
time, the BR agents provide little total benefit to the re-
sponder. Thus, the style of play shown by the BR agents is
to make aggressive offers; these agents earn much more per
accepted offer. Notably, even the best BR agent performed
much worse than the best emulator, overall.

Given that the BR agents are designed to formulate best
responses to the expected behavior of human players, we
may be surprised that they did not perform better. In par-
ticular, the BR agent that uses model P{R−} to reason
about the other proposer is employing the same pattern of
reasoning as the emulator agent that follows the advice of
model P{R, P{R−}}. Both of these computer agents think
about the other proposer using model P{R−}, and both
think about the responder using model R. Both agents will
deterministically pick the move that maximizes expected
utility. The only difference between these two agents is
the utility function that is used. In the emulator agent,
the utility function is that of model P{R, P{R−}}, which is

Table 2: Performance of computer agents in follow-up sessions (45 Game States; 420 Data Instances).
Proposer 1 Played by: Human Emulator Agent Best Response Agent
Model Used by Agent: N/A P{} P{R−} P{R, P{R−}} P{} P{R−} P{R, P{R−}}

1 E[#accepted offers] 24.91 7.35 19.83 25.89 13.99 15.24 15.24
2 E[SB] 1692.75 574.36 1325.00 1738.99 1426.68 1574.60 1531.26
3 E[OB] 1851.00 162.93 1417.50 1869.58 527.26 571.85 497.68

learned from human data; in the BR agent, the utility func-
tion is selfish, i.e., to maximize the agent’s expected benefit
(SB). Yet, the BR agent earned some 250 points less in to-
tal benefit than the emulator. This fact suggests that, for
the purpose of formulating a best response, our model of
responder behavior R did not generalize well to this cohort
of human subjects. Nevertheless, the model R more than
sufficed for the purpose of emulation. Model R misleads
the BR agent into thinking that aggressive offers will be ac-
cepted; in contrast, the emulator agent prefers not to make
aggressive offers, to begin with.

7. CONCLUSION
Our paper concerns strategic human reasoning about oth-

ers under uncertainty and its implications for the design of
computer agents intended to interact with humans in multi-
agent settings. We conduct human-subjects trials in which
people play a three-player partial-information negotiation
game. We then construct a hierarchy of models to investi-
gate how people reason. After training these models from
human data, we deploy them in computer agents that inter-
act with humans in follow-up trials. Our data indicate the
following: 1) Human players are not reflexive; that is, hu-
mans do not base their decisions only upon the options they
have. Instead, humans also reason about the other players
in the game. 2) Human players reason about both of the
other players in our game, and reason under uncertainty. 3)
Models of human behavior that better fit our data enabled
more successful computer agents. We can use our models to
build effective computer agents that not only perform well
in terms of the scores they earn, but also contribute to the
social good by providing high utility to others. 4) Beyond
a certain level of sophistication, more complex models yield
diminishing returns and so may not be worth the additional
computational effort. 5) Agents that emulate human be-
havior may be more robust to variations in behavior over
different cohorts of humans than agents that play a best re-
sponse to models of human behavior. Best response may be
a more risky approach to playing our game.

If we want to build computer agents that can interact
successfully with humans in a multiagent setting, then we
must know something about how humans behave. In this
paper, we have demonstrated that models of human reason-
ing about others can be effectively leveraged to construct
successful computer agents. Our computer agents success-
fully emulated human performance. Similar demonstrations
in other domains will be useful future work.

8. ACKNOWLEDGMENTS
The research reported in this paper was supported in part

by NSF grant CNS-0453923 and AFOSR grant FA9550-05-1-
0321. Any opinions, findings and conclusions, or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of NSF, AFOSR, or
the U.S. Government.

9. REFERENCES
[1] T. Bosse, Z. Memon, and J. Treur. A two-level

BDI-agent model for theory of mind and its use in
social manipulation. In AISB 2007 Workshop on
Mindful Environments, 2007.

[2] C. F. Camerer. Behavioral Game Theory: Experiments
in Strategic Interaction. Princeton Univ. Press, 2003.

[3] A. Falk, E. Fehr, and U. Fischbacher. On the nature
of fair behavior. Economic Inquiry, 41(1):20–26, 2003.

[4] D. Fudenberg and J. Tirole. Game Theory. MIT Press,
1998.

[5] Y. Gal, B. J. Grosz, A. Pfeffer, S. M. Shieber, and
A. Allain. The influence of task contexts on the
decision-making of humans and computers. In Proc.
Sixth International and Interdisciplinary Conference
on Modeling and Using Context, 2007.

[6] Y. Gal and A. Pfeffer. Predicting people’s bidding
behavior in negotiation. In AAMAS, 2006.

[7] Y. Gal, A. Pfeffer, F. Marzo, and B. J. Grosz.
Learning social preferences in games. In National
Conference on Artificial Intelligence (AAAI), 2004.

[8] P. J. Gmytrasiewicz and E. H. Durfee. Rational
communication in multi-agent environments.
Autonomous Agents and Multi-Agent Systems,
4(3):233–272, 2001.

[9] J. Gratch and S. Marsella. Evaluating a computational
model of emotion. Autonomous Agents and
Multi-Agent Systems, 11(1):23–43, 2005.

[10] B. J. Grosz, S. Kraus, S. Talman, B. Stossel, and
M. Havlin. The influence of social dependencies on
decision-making: Initial investigations with a new
game. In AAMAS, 2004.

[11] S. Kraus. Strategic Negotiation in Multiagent
Environments. MIT Press, 2001.

[12] C. Lueg and R. Pfeifer. Cognition, situatedness, and
situated design. In Conf. on Cognitive Tech., 1997.

[13] S. Marsell, D. Pynadath, and S. Read. Psychsim:
Agent-based modeling of social interactions and
influence. In ICCM 2004, 2004.

[14] J. Nash. The bargaining problem. Econometrica,
18:155–162, 1950.

[15] M. Rabin. Psychology and economics. Journal of
Economic Literature, 36:11–46, 1998.

[16] M. Seif El Nasr, J. Yen, and T. R. Ioerger.
Flame—fuzzy logic adaptive model of emotions.
Autonomous Agents and Multi-Agent Systems,
3:219–257, 2000.

[17] J. M. Vidal and E. H. Durfee. Recursive agent
modeling using limited rationality. In International
Conference on Multi-Agent Systems, 1995.

[18] G. Weiss, editor. Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence. MIT
Press, 2000.

