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Abstract. Many environments in which people and computer agentsaotén-
volve deploying resources to accomplish tasks and satisfysg This paper in-
vestigates the way that the context in which decisions adera#fects the behav-
ior of people and the performance of computer agents thataot with people
in such environments. It presents experiments that medsagotiation behav-
ior in two different types of settings. One setting was a teshtext that made
explicit the relationships among goals, (sub)tasks anduress. The other set-
ting was a completely abstract context in which only the fffgyfor the decision
choices were listed. Results show that people are moreutgeleés selfish, and
less competitive when making decisions in task contexts tfzen making them
in completely abstract contexts. Further, their overatfggenance was better in
task contexts. A predictive computational model that waisiéd on data obtained
in the task context outperformed a model that was traineéut@ abstract con-
text. These results indicate that taking context into aotdsi essential for the
design of computer agents that will interact well with peopl

1 Introduction

Technology has opened up vast opportunities for computantado interact with peo-
ple in such increasingly diverse applications as onlingians, elderly care systems,
disaster relief operations, and system administratorgs ¢l 10]. While these applica-
tions differ broadly in size, scope, and complexity, they similar in that they involve
people and computers working togethetask settingsin which the participants fulfill
goalsby carrying outasksrequiring the use afesourcesParticipants may need to co-
operate, negotiate, or perform other group actions in dalachieve the goals, requir-
ing their reasoning about the potential and likely behayvimirother participants. For
computer agents to interact successfully with people i snixed human-computer
task settings, they need to meet people’s expectationaofrtates.

For example, in the domain of care of elderly patients, thesigal challenges and
health problems of this population typically require a teahtaretakers—not only
doctors and nurses, but also home health aides, housekekgmeity members. Current
medical care depends on computer systems for schedulingraaidng prescriptions;
computers, of a very small scale, are also key elements @&mpakers and other im-
plantable medical devices. Thus, the agents involved ieraldre are both human and
computer-based; they come from different organizatioddwve different roles. As the



computer agents involved in such care become more sogdtatiand more of them be-
come connected to the care of a single individual, the needlilities to coordinate
and work as team members will become important.

In designing computer agents for such settings, it is thymmant to understand the
decision-making strategies people deploy when they intevith others and to evaluate
various computational strategies for interacting with gileo Formally modeling the
behavior of people, and in particular their decision-mgkiehaviors, raises significant
challenges for computer-agent design.

To investigate the influence of task contexts on decisiokinga we deployed a
conceptually simple but expressive game called ColoredsTi@T) [4]. CT explicitly
manifests goals, tasks, and resources in a way that is cbngptel people, yet abstracts
away from a complicated underlying domain. By embeddingsi@e-making within a
task context, CT enables investigators to focus on peogéesion-making strategies,
rather than specifying and reasoning about individual dormamplexities.

CT differs significantly from the highly abstracted setsngpically used in behav-
ioral economics, such as decision trees or normal form salfleese forms completely
hide the underlying relationship between tasks, goals,rasdurces and fully specify
payoffs for players from potential strategies. We call #histract representatioriable
context Game-theoretic tools can be applied in such games to praviddealized no-
tion of appropriate decision-making behavior. The decisiengendered by CT games
can also be described as a table of payoffs, enabling toasiriietween task and table
contexts use to embed the same decision.

We analyzed people’s behavior in terms of various sociakGa, for which we
give a precise definition in terms of the CT game. We show thapfe presented with
identical decision-making problems in the task context #medtable context perform
strikingly differently, both qualitatively and quantibeely. When making decisions in
the task context, people are more helpful, less competitieEless game-theoretic than
when making decisions in the table context. Surprisinglg, results also indicate that
the task context improves people’s overall performance.

To evaluate the effects of these differences for computentsghat interact with
people, we trained predictive models on data obtained ih bgtes of contexts. The
models explicitly represented social factors that havents®wn to affect people’s
behavior [3]. Most importantly, the model trained on dataagied in the task con-
text outperformed the model trained on data obtained inahketcontext. In addition,
overall performance was better when the context was taskied, rather than payoff-
oriented.

For designers of intelligent agents, the important lesgahese experiments is that
the design of computer agents that will operate in mixed lhnsowmputer settings must
consider how the decisions presented to people will be gtudabzed and reflect the
human decision-making process in that context, not menedypurely idealized (even
if theoretically equivalent) manner. As much as we mighe li there is no way for
computer agents to escape into pure game theory when pattigg in mixed systems.



2 Empirical Methodology

This section describes the two types of context, task coied table context, we in-
vestigated and the experiments conducted in those settings

In the task context, a 2-player CT game was played on a 4x4 board of ablore
squares with a set of chips. One square on the board was desilgas the goal square.
Each player’s icon was initially located in a random, noragaosition. To move to an
adjacent square a played needed to surrender a chip in thieatdhat square. Players
were issued four colored chips. They had full view of the baard each others’ chips,
and thus they had complete knowledge of the game situation.

Players were designated one of two role®posermlayers could offer some subset
of their chips to be exchanged with some subset of the chipgsfonder players;
respondeplayers could in turn accept or reject proposers’ offersolbffer was made,
or if the offer was declined, then both players were left viltkir initial allocation
of chips. Chip exchanges were enforced by the game contrafier the negotiation
ended, both players were automatically moved as close aihpoo the goal square.

The scoring function for players depended solely on thein psrformance: 100
points for reaching the goal; 10 points for each tile left iplayer's possession; 15
points deducted for any square in the shortest path betwlagarfs final position and
the goal-square. These parameters were chosen so thaggdetthe goal was by far the
most important component, but if an player could not get éoghal it was preferable
to get as close to the goal as possible. The score that eagtr péceived if no offer
was made was identical to the score each player received ibffier was rejected by
the deliberator. We refer to this score as tleenegotiation alternativand to the score
that each player received if the offer was accepted by thbeatakor as theproposed
outcomescore.

Snapshots of the CT GUI of one of the games used in the expetriimeshown
in Figure 1. The Main Window panel, shown in Figure la, inelsidhe board game,
the goal square, represented by an icon displaying the IBftand two icons, “me”
and “sun”, representing the location of the two players anltbard at the onset of the
game? The bottom part of the Main Window panel, titled “chips”, s¥sthe chip distri-
butions for the players. In the game shown here, both pldgekssufficient chips to get
to the goal square. A proposer uses the Propose Exchandegiawven in Figure 1b, to
make an offer to a responder. The Path Finder panel, showigime=1c, provides de-
cision support tools to be used during the game. It displdig$ af path suggestions to
the goal, the missing chips required to fulfill each path, #redbest position the agent
can reach relative to its scoring function. Agents can vig information for the chip
set that is currently in their possession, or for any hypiitbechip set for each of the
players.

Thetable context consisted of a completely abstract representafienCT game
as a list of potential offers that could be selected by theaser player. Each offer
was represented as a pair of payoffs for the proposer anéspender. Figure 2 shows
a snapshot of a game in this representation as seen from thiegbwiew of a pro-
poser player. Each cell in the table represents an offersaledting a cell corresponds

4 CT colors have been converted to grey scale in this figure.
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to choosing the offer associated with its payoffs. One ofdéks represents the no-
negotiation alternative, which is presented as the defauttome of the interaction.

You are a proposer.
Proposal Phase. Time left: 162

Please choose the default outcome or one of the alternative offers in the table. If you do not choose an offer by the time limit, the result will be the default outcome.

Default outcome:
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180 170 £ 19 55 © 75 170 ¢ 55 190 ¢ 200 40 o 180 170 ¢ 75 170 © 190 55 © Original Order
200 40 19 55 ¢ 55 190 ¢ 190 55 © 65 180 65 180 - 75 170 45 200 © YourBenefit Descending
200 45 19 50 c 65 180 c 85 160 19 160 18 170 75 170 55 190  OtherBenefit Descending
¢ 210 35 ¢ 170 180 «« 65 180 « 190 160 ¢ 55 190 ¢ 180 170 ¢ 55 190 ¢ 170 75
© 160 190 < 190 55 < 45 200 « 170 75 ¢ 85 160 ¢ 180 170 45 200 ¢ 190 55
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Propose Selected Outcome.

Fig. 2: Snapshot of an Interaction in a Table Context

A total of 32 subjects participated in the experiment, elyudivided between the
two conditions. They interacted with each other for 96 raumRhrticipants in the task
condition interacted with each other using the CT envirominehereas those in the
table condition interacted with each other using the paguffrix representation. Par-
ticipants only interacted with others in their conditiorogp; they were not provided
any information about each other. In both conditions, pgréints were compensated in
a manner that depended solely on their individual scoregeagted over all rounds of
interaction.

For each CT round that was played in the task condition, aivalgmt round was
played in the table condition, in the sense that the payadffgiahe intersection of each
row and column represented the score in the CT round for thregmonding offer and
response. For example, the payoff matrix shown in Figure &jisivalent to the CT
game shown in Figure 1.

3 Results and Analysis

We use the terntable proposersaandtask proposerso refer to the participants that
were designated with the proposer role in the table or tasklition respectively and
similarly for the responder role. We use the tesffer benefito refer to the difference
between the proposed outcome for an offer and the no-néigot@ternative score of
the round. We measured proposers’ behavior in terms of tatufes: The degree to



which proposers werselfishor helpfulwas defined in terms of the average offer ben-
efit they proposed for themselves or for responders, reispgtthe degree to which
proposers wereompetitivewvas defined in terms of the difference between the average
offer benefit they proposed for themselves and the offerfitehey provided to respon-
ders. Although we have given a psychological interpreteiichese features, we do not
imply that they are independent. For example, proposer&xhibit both a degree of
selfishness and a degree of helpfulness based on the averagfé bf their offers.

3.1 The Effect of Contexts on Human Behavior

Table 1 presents the average offer benefit to participanbe®ih task and table con-
dition for each role designation. Table proposers offeigdificantly more benefit to

Table 1: Average Benefit of Offer

Offer Benefit to Num.
ProposeiRespondéacceptanc
Task| 82.3 47.6 62 (77%)
Tablg 98 36 69 (77%)

(2]

themselves than did task proposers (t-test 0.05). Also, table proposers offered sig-
nificantly less benefit to table responders than task propadiered to task responders
(t-testp < 0.01). Thus, the task context had the effect of making proposers imelpful
and less selfish when interacting with responders.

The difference between the average offer benefit to prop@set to responders is
positive in both conditions (t-tegt< 0.05). Although in both conditions proposers are
competitive, the offer difference was larger in the tabladition than in the task con-
dition (t-testp < 0.05). Thus, on average table proposers were more competitire th
task proposers. We hypothesized that table proposers roageetitive offers more of-
ten than did task proposers. To test this hypothesis, wepeed a within-round com-
parison of the offer benefit in both conditions. Table 2 pnés¢he number of rounds
in which the difference between the proposed benefit forgsefs and responders was
positive (column “Proposer Responder”) and the number of rounds in which this dif-
ference was negative (column “ProposeResponder”). As shown by the table, table
proposers made offers that benefited themselves over résgosignificantly more of-
ten than task proposers (chi-square 0.05). These results confirm that table proposers
are more likely to be competitive than proposers.

Table 2 also shows that 62% of all offers made by table pragdsenefitedhem-
selveanore than table responders, while 60% of all offers made sy paoposers ben-
efited taskespondersnore than themselves (chi-square: 0.05). This striking result
indicates that task proposers were helpful more often thay were selfish, whereas
table proposers were selfish more often than they were Helpfu

Having established that the context in which decisions adaemaffected the behav-
ior of proposers, we investigated whether it affected thealbsr of responders. It is



Table 2: Frequency of Competitive Offers

=

Proposer> RespondeProposer: Respond
Task 26 (27%) 51 (60%)
Table 60 (62%) 24 (28%)

more difficult to perform within-round comparisons of reager behavior across task
and table conditions, because the decision of whether tepaar reject an offer de-
pends on the exchange offered by proposers. For the samé, rinis exchange may
be different for task and table conditions. As shown in Tdblthere was no difference
in the ratio of exchanges accepted by responders (77%) bataanditions. However,
this result does not mean that responders were not affegtedriext; as also shown
in Table 1, they were responding to exchanges that were mapéuhto them in the
task condition. We expected this pattern to hold for acakpféers as well; thus, we
expected that the offers that wexeceptedy responders were more helpful to them in
the task condition than in the table condition.

Table 3: Average Benefit for Accepted Exchanges

Propos€iRespondéfTotal
Task| 79.5 56.4 |135.9
Tablg 85.6 40.7 |126.3

Table 3 shows the exchange benefit to proposers and respandgaged over all
accepted proposals, as well as the total accumulated bienedith condition. The ben-
efit to responders from accepted proposals was significhigher in the task condition
than in the table condition, and conversely for the propogetestp < 0.05). These
results indicated that task responders outperformed tabponders, whereas table pro-
posers outperformed task proposers. Interestingly, asghémost column shows, the
total performance (combined proposers and respondersgoeas higher in the task
condition than in the table condition. The benefit for acedpgxchanges is a mea-
surement of performance, because the outcome of each réume@ction was fully
determined by the action of the responder (t-test 0.1). Although this result was not
significant at thes < 0.05 confidence interval, the trend it indicates suggests tlsit ta
context has a positive effect on the combined performanpaxicipants.

To compare between the benefits of proposed and acceptedngeas) we plotted
the average benefit to proposer and responder from thegs offboth conditions, as
shown in Figure 3. We define thdiscrepancybetween two offers to be the Euclidean
distance between the two points representing the benefifseobffers to proposers
and responders. As apparent from the figure, the discredaeteyeen proposed and
accepted offers was significantly smaller in the task cdamdlithan in the idealized
condition (t-testp < 0.05). This result suggests that on average, task proposers were
more accurate at estimating the offers that were likely tadmepted by responders.
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Fig. 3: Benefit for Proposed Exchanges vs. Accepted Exclsange

Also shown in Figure 3 is that in both conditions, acceptddrsfwere more bene-
ficial to responders than proposed offers; also in both ¢mmdi, accepted offers were
less beneficial to proposers than proposed offers. Thidtrasggests that responders
expected proposers to be more helpful and less selfish indwottiitions; this aligns
with our findings that players were competitive across taskidealized contexts. How-
ever, the difference between the benefit to responders fropoged and accepted offers
was significantly greater in the task condition than in tresl@zed condition. Similarly,
the difference between the benefit to proposers from prapaseé accepted offers was
significantly greater in the idealized condition than in task condition. This implies
that in the idealized condition, responders expect pragdsebe less selfish, while in
the task condition, responders expect proposers to be netpéuh A possible expla-
nation is that the task context induced responders to expexd help from proposers
than the idealized context.

3.2 Discussion of Alternative Explanations

To address the question of whether the difference in behasgio be explained by the
lack of an explicit representation of payoff in the task citind, we ran an experiment
that used the CT game, but allowed subjects to view the psyoffpotential offers
for all players. This intermediate representation presethe task context as well as
displaying the payoff function for both players. Resultsiggshe same set of games as
in the original experiment show that there was no significhiférence in the average
benefit allocated to proposers and responders in this ietdiate representation than in
the task condition.

In addition, we ruled out the effect of cognitive demands ohjscts by includ-
ing decision support tools for both modes of decision regreion. In the CT game,
subjects could use the PathFinder panel, shown in Figure tiaeéry the system for
suggestions about the best paths to take given any hypaahetiip distribution. When
presented with a table of payoffs in the table condition jettis could sort the table
by their own, or the others’ benefit. In this way, subjectsenaliowed to focus on the
interaction rather than on the cognitive complexity of tleeidion-making.



3.3 Comparison with Game Theoretic Strategies

We now turn to a comparison between the offers that were nradadh condition and
the offers dictated by the exchange corresponding to thé Basilibrium strategy. We
use the ternNE exchang®f a round to refer to the exchange prescribed by the Nash
equilibrium strategy profile for the round. This exchandersthe maximum benefit for
the proposer, out of the set of all of the exchanges that nfiarnegative benefits to the
responder. In our scenarios, the NE exchange generallymedto selfish, unhelpful,
competitive offers.

We expected table proposers to be more likely to offer NE arglks than task pro-
posers. Table 4 shows the number of NE offers made by praposepth conditions.
The proportion of NE offers was significantly higher in theleacondition (59%) than
in the task condition (15%) (chi-squaire< 0.01).

Table 4: Frequency of Nash Equilibrium Offers

Num.. offers
Task| 13 (15%)
Tabld 57 (59%)

To compare the extent to which the exchanges made by prapiogée two type of
contexts differed from the NE exchange, we plotted the ayeteenefit offered by NE
exchanges and by proposed exchanges for both task and tadgl#¢ions, as shown in
Figure 4.
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Fig. 4: Benefit from Proposed Exchanges vs. NE Exchanges

The difference between the average benefit to responderstire NE offer and
the average proposed exchange was close to zero in the tafddion, and large and
positive in the task condition (t-tegt < 0.05). Similarly, the difference between the
benefit to proposers from the NE offer and the average prapesehange was close



to zero in the table condition, and large and negative indlsk tondition (t-tesp <
0.05). The Euclidean distance between the two points represgtiie NE benefit to
proposers and responders was significantly larger in tikectazdition than in the table
condition. In fact, there was no statistically significaiffatence between offers in the
table condition and NE offers. These results are strikirggynificant, showing that
participants who make decisions in the table condition aoeentikely to follow the
game-theoretic paradigm.

There is a discrepancy between these findings and those loétiavioral economic
studies, which show that people dot generally adhere to game theoretic equilib-
ria, and display variance within their play. Several diffieces between the structure of
the negotiation scenario used in our experiments and thegamditionally used in
behavioral economics may explain this difference. First,scenario presented partic-
ipants with some guaranteed reward (the no-negotiati@nrgltive) if agreement was
not reached at the end of the interaction. Traditional bigmaleconomic games do not
provide such reward. (For example, if no agreement is rahichthe ultimatum game,
both players end up empty handed.) It is possible that iretabhtexts, proposers saw
fit to make selfish exchanges, because they could alwaysdel bn their guaranteed
outcome if that offer was rejectédSecond, each interaction in our experiment varied
which player needed the other to get to the goal. In some uadh players were mu-
tually dependent on each other. In traditional behaviotahemic experiments, play-
ers’ dependencies are static. A possible hypothesis, wortfurther investigation, is
that table participants were more likely to follow game tiegic equilibria in one type
of dependency but not in others.

4 The Effect of Contexts on Learner Agents

This section presents results that indicate the effecstifcontexts on the performance
of computer systems that learn a model of people’s negotidiehavior. Using the
data collected from the task and table contexts, we trainsahgputational model for
predicting the actions of human proposers. We adopted thdehproposed by Gal
and Pfeffer [2] for predicting people’s bidding behaviommlti-attribute negotiation.
In this model, proposals are generated by converting p&oplidity functions into a
stochastic function that assigns a probability to eachriatieexchange at each round
of interaction.

At each round of interactiot, the inputs to the model wer& N% and NNE,
the no-negotiation alternative scores for the proposerasgonder, andO% (x) and
POk (z), the proposed outcome scores for the proposer and resptordamoten-
tial exchange:. We omit the superscript when it is clear from context. Using these
features, we can define the following social factors for theppser agent, denoted
s1, S2, s3 that match the features we used to analyze human behaviectio8 3.

— Selfishness measures the extent to which proposers cared thiedr individual
benefit.
si(z) = POp(z) — NNp

5 This phenomenon, deemed the “endowment effect”, has bemmumted in the psychology
literature [6]).



— Helpfulness measures the extent to which proposers wereesied in the welfare
of the group as a whole, as well as their own benefit.

s2(z) = (POp(x) + POR) — (NNp + NNg)

— Competitiveness measures the extent to which proposees tardo better than
others. Such participants were willing to sacrifice someheafirtown benefit in
order to increase this difference.

83(.%') = (POP(,T) — NNP) — (POR(,T) — NNR)

For each potential exchangg, we defined a “social” utility function:(z;) for a
general proposer player that is a weighted sum of the featigned above:

3
u(wy) =y w; - si(x)
=1
wherew; denotes the weight associated with social fastor

This utility function is transformed into a stochastic mbithat assigns a probability
to each possible exchange at each round of interaction. tAnsaf function is used to
make the likelihood of each exchange proportional to thelitiood of other possible
exchanges. This model is well suited for capturing certapeats of human behavior:
The stochasticity of the soft-max function allows for prepos to deviate from choosing
the action associated with the highest utility, but in a coligd way. In addition, the
likelihood of choosing an exchange that incurs a high satiliy will increase if there
are few other similar exchanges that incur high utility, avil decrease if there are
many other similar exchanges.

The model parameters, represented by the feature weights. , w3 were trained
using supervised learning. The labeled training set ctetisf the exchanges made by
proposers in the task and table conditions. Each instantasted of pairs of possible
exchange$z., z;), wherez, was the offer made by the proposer, ands any other
possible exchange. To estimate the feature weights of fliy @tinction, we used a
gradient-descent technique that learned to predict thiegiitty of a chosen offex.
given any other offex;; as follows:

1

P(z, chosen| z, or z; chosens,,s,;) = T et

Here,s, denotes the social factors associated with the offer thatpraposed. This
probability represents the likelihood of selectingin the training set, given;. The
error function to minimize is defined as the extent to whiah hodel is not a perfect
predictor of this concept,

errj = 1 — P(z, chosen| x, orz; chosens,,s;)

Taking the derivative of this function, we obtain the folloy update rule for the fea-
turesw, wherex is a constant learning rate, add= s, — s;.

w=w+alerr;)?- (1 —err;)-d



We learned separate models for the task and table conteXisth cases, we trained
and tested the algorithms separately, using ten-fold crakdation. We obtained the
following average posterior parameter values for the featgelfishness, helpfulness
and competitiveness in each condition.

ConditiorlLearned weights
Task [(5.20,3.2,0.40)
Table | (8.20,1.3,8)

As shown in the table, both task proposers and table propaserselfish, in the sense
that they place high weight on their own benefit. Howevelgtaboposers assign higher
weight to their own benefit than do task proposers, suggestay are more selfish than
task proposers. Task proposers also assign a higher weitiedpfulness and signifi-

cantly lower weight to competitiveness than table propasEnese values align with

the trends reported in the Results and Analysis section.

We evaluated both models on test sets comprised of held taitfisen both task
and table conditions. We report the average negative laditigod for all models in
the following table as computed using ten-fold cross vaidta A lower value for this
criteria means that the test set was given a higher liketiimothe model.

Training / TestingAverage Logb
Condition Likelihood
Task / Task 0.144

Table / Task 1.2
Table / Table 0.220
Task / Table 1.2

As shown by the table, the model trained and tested on thectasttition was able to
fit the data better than the model trained and tested in tHe taimdition, indicating
that computer agents participating in mixed human-compagk settings must model
human performance in a way that reflects the context undechwthie decision was
made.

In addition, the model trained in the task condition outparfed the model trained
in a table context when both models were evaluated in tastexts (And conversely
for the model trained in the table condition.) The extent tooh both models under-
performed when evaluated in the context they were not tdaimewas similar for both
conditions. These results clearly imply that the contexwirich decisions are placed
affects the performance of computer models that learn &vaet with people.

5 Related Work

A series of studies spawned by the seminal work of Tversky Kaltheman [11, 7]

show that the way decisions, outcomes, and choices areilole$¢o people influence
their behavior, and these different “framings” fundaméntfect people’s perceptions
and conceptualizations. For example, people’s decisiahimg is sensitive to the pre-
sentation of outcomes as losses or wins and to the preseattefative choices [12].
In addition, decisions are influenced by the labeling ofret&ons with terms that carry



cultural or social associations [8]. Some of these framiffieces (e.g., presence of al-
ternatives) abstract away from domain specifics, whilerstfe2g., social associations)
typically rely on real world or domain knowledge and expecie, sometimes quite sub-
tly. Both types of framing effect may be investigated using Eor example, we have
conducted a preliminary study of the effects of social retethips on decision-making
in CT [9].

Our work is fundamentally different from work that addrestee effects of graph-
ical versus tabular representations on people’s decisiaking [13, 5]. This work has
shown that performance on particular tasks is enhanced Wiea is a good match
between the mode used to represent a task and the cogngourees required to com-
plete it. It aims to present information in a way that progdmod “cognitive fit", a
vivid representation that overcomes the constraints ofdwimformation processing.
In contrast, we examine whether the structural featurégtieanherent in task contexts,
such as the relationship between goals and resources;, péfegle’s decision-making.
We do not address the cognitive-load implications of ddfercontexts or with their
mode of representation. In fact, we control for the effetsognitive load in both task
and table settings by providing participants with decissopport tools.

Lastly, recent work on modeling the social factors that ciffgeople’s decision-
making behavior have concentrated on task contexts on§].[;his work extends
these approaches by comparing models of decision-makitagkicontexts and table
contexts.

6 Conclusion and Future Work

We have shown that when making decisions placed in the cbofex task setting,
people behave more helpfully, less selfishly, and less ctitivedy than when making
decisions in the context of a table of payoffs. Further, pe@pe significantly more
likely to behave according to game theoretic equilibriaablé contexts, which has
a negative effect on their performance, compared to thdiabier in task contexts.
Moreover, people do not behave differently in task contesten they are given access
to the possible payoffs for themselves and others. We irtlpcedictive models of
the decision-making processes, showing that when leainitask contexts, computer
players are better at predicting people’s behavior thannwblarning in completely
abstract contexts.

The results reported in this study suggest that when bugjldisystem for human-
computer interaction, placing the decisions in task castesll improve the perfor-
mance of both people and computer agents that learn fromeéldperefore, designers
of systems that involve people and computers interactiggtteer need to decide how
to appropriately contextualize the decisions they preseparticipants.

While our experiments were performed in a relatively simgoie flat task context,
the fact that differences were found in this context sugthestit is likely there will be
even greater ones in more complex settings. Our resultsge@vguideline for agent
designers, specifically that the right context should bel wgeen investigating human
decision-making processes. We have presented an inftasteifor conducting such an
investigation, and a methodology for how it might be done.
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